Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.01504
Cited By
Towards Novel Insights in Lattice Field Theory with Explainable Machine Learning
3 March 2020
Stefan Blücher
Lukas Kades
J. Pawlowski
Nils Strodthoff
Julian M. Urban
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Novel Insights in Lattice Field Theory with Explainable Machine Learning"
8 / 8 papers shown
Title
Learning Lattice Quantum Field Theories with Equivariant Continuous Flows
Mathis Gerdes
P. D. Haan
Corrado Rainone
Roberto Bondesan
Miranda C. N. Cheng
AI4CE
24
40
0
01 Jul 2022
Stochastic normalizing flows as non-equilibrium transformations
M. Caselle
E. Cellini
A. Nada
M. Panero
36
34
0
21 Jan 2022
Machine Learning in Nuclear Physics
A. Boehnlein
M. Diefenthaler
C. Fanelli
M. Hjorth-Jensen
T. Horn
...
M. Schram
A. Scheinker
Michael S. Smith
Xin-Nian Wang
Veronique Ziegler
AI4CE
47
41
0
04 Dec 2021
Quantum field-theoretic machine learning
Dimitrios Bachtis
Gert Aarts
B. Lucini
AI4CE
19
28
0
18 Feb 2021
Disentangling a Deep Learned Volume Formula
J. Craven
Vishnu Jejjala
Arjun Kar
31
19
0
07 Dec 2020
Correlator Convolutional Neural Networks: An Interpretable Architecture for Image-like Quantum Matter Data
Cole Miles
A. Bohrdt
Ruihan Wu
C. Chiu
Muqing Xu
G. Ji
M. Greiner
Kilian Q. Weinberger
E. Demler
Eun-Ah Kim
29
42
0
06 Nov 2020
Discovering Symmetry Invariants and Conserved Quantities by Interpreting Siamese Neural Networks
S. J. Wetzel
R. Melko
Joseph Scott
Maysum Panju
Vijay Ganesh
33
64
0
09 Mar 2020
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,242
0
24 Jun 2017
1