ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.01504
  4. Cited By
Towards Novel Insights in Lattice Field Theory with Explainable Machine
  Learning

Towards Novel Insights in Lattice Field Theory with Explainable Machine Learning

3 March 2020
Stefan Blücher
Lukas Kades
J. Pawlowski
Nils Strodthoff
Julian M. Urban
    AI4CE
ArXivPDFHTML

Papers citing "Towards Novel Insights in Lattice Field Theory with Explainable Machine Learning"

8 / 8 papers shown
Title
Learning Lattice Quantum Field Theories with Equivariant Continuous
  Flows
Learning Lattice Quantum Field Theories with Equivariant Continuous Flows
Mathis Gerdes
P. D. Haan
Corrado Rainone
Roberto Bondesan
Miranda C. N. Cheng
AI4CE
24
40
0
01 Jul 2022
Stochastic normalizing flows as non-equilibrium transformations
Stochastic normalizing flows as non-equilibrium transformations
M. Caselle
E. Cellini
A. Nada
M. Panero
36
34
0
21 Jan 2022
Machine Learning in Nuclear Physics
Machine Learning in Nuclear Physics
A. Boehnlein
M. Diefenthaler
C. Fanelli
M. Hjorth-Jensen
T. Horn
...
M. Schram
A. Scheinker
Michael S. Smith
Xin-Nian Wang
Veronique Ziegler
AI4CE
47
41
0
04 Dec 2021
Quantum field-theoretic machine learning
Quantum field-theoretic machine learning
Dimitrios Bachtis
Gert Aarts
B. Lucini
AI4CE
19
28
0
18 Feb 2021
Disentangling a Deep Learned Volume Formula
Disentangling a Deep Learned Volume Formula
J. Craven
Vishnu Jejjala
Arjun Kar
31
19
0
07 Dec 2020
Correlator Convolutional Neural Networks: An Interpretable Architecture
  for Image-like Quantum Matter Data
Correlator Convolutional Neural Networks: An Interpretable Architecture for Image-like Quantum Matter Data
Cole Miles
A. Bohrdt
Ruihan Wu
C. Chiu
Muqing Xu
G. Ji
M. Greiner
Kilian Q. Weinberger
E. Demler
Eun-Ah Kim
29
42
0
06 Nov 2020
Discovering Symmetry Invariants and Conserved Quantities by Interpreting
  Siamese Neural Networks
Discovering Symmetry Invariants and Conserved Quantities by Interpreting Siamese Neural Networks
S. J. Wetzel
R. Melko
Joseph Scott
Maysum Panju
Vijay Ganesh
33
64
0
09 Mar 2020
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,242
0
24 Jun 2017
1