ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.01907
  4. Cited By
Turbulence Enrichment using Physics-informed Generative Adversarial
  Networks
v1v2 (latest)

Turbulence Enrichment using Physics-informed Generative Adversarial Networks

4 March 2020
Akshay Subramaniam
Man Long Wong
Raunak Borker
S. Nimmagadda
S. Lele
    GANAI4CE
ArXiv (abs)PDFHTML

Papers citing "Turbulence Enrichment using Physics-informed Generative Adversarial Networks"

15 / 15 papers shown
Title
Comparison of Generative Learning Methods for Turbulence Modeling
Comparison of Generative Learning Methods for Turbulence Modeling
Claudia Drygala
Edmund Ross
F. Mare
Hanno Gottschalk
AI4CE
148
3
0
25 Nov 2024
Reconstructing unsteady flows from sparse, noisy measurements with a
  physics-constrained convolutional neural network
Reconstructing unsteady flows from sparse, noisy measurements with a physics-constrained convolutional neural network
Yaxin Mo
Luca Magri
AI4CE
67
0
0
30 Aug 2024
SuperBench: A Super-Resolution Benchmark Dataset for Scientific Machine Learning
SuperBench: A Super-Resolution Benchmark Dataset for Scientific Machine Learning
Pu Ren
N. Benjamin Erichson
Shashank Subramanian
Omer San
Z. Lukić
Michael W. Mahoney
Michael W. Mahoney
107
15
0
24 Jun 2023
Generative Adversarial Networks to infer velocity components in rotating
  turbulent flows
Generative Adversarial Networks to infer velocity components in rotating turbulent flows
Tianyi Li
M. Buzzicotti
Luca Biferale
F. Bonaccorso
35
11
0
18 Jan 2023
Multi-scale data reconstruction of turbulent rotating flows with Gappy
  POD, Extended POD and Generative Adversarial Networks
Multi-scale data reconstruction of turbulent rotating flows with Gappy POD, Extended POD and Generative Adversarial Networks
Tianyi Li
M. Buzzicotti
Luca Biferale
F. Bonaccorso
Shiyi Chen
M. Wan
AI4CE
35
21
0
21 Oct 2022
Physics-informed Deep Super-resolution for Spatiotemporal Data
Physics-informed Deep Super-resolution for Spatiotemporal Data
Pu Ren
Chengping Rao
Yang Liu
Zihan Ma
Qi Wang
Jianxin Wang
Hao Sun
114
13
0
02 Aug 2022
PhySRNet: Physics informed super-resolution network for application in
  computational solid mechanics
PhySRNet: Physics informed super-resolution network for application in computational solid mechanics
Rajat Arora
AI4CE
83
10
0
30 Jun 2022
Machine Learning-Accelerated Computational Solid Mechanics: Application
  to Linear Elasticity
Machine Learning-Accelerated Computational Solid Mechanics: Application to Linear Elasticity
Rajat Arora
AI4CE
108
7
0
16 Dec 2021
Generative Modeling of Turbulence
Generative Modeling of Turbulence
Claudia Drygala
Benjamin Winhart
F. Mare
Hanno Gottschalk
GANAI4CE
94
39
0
05 Dec 2021
Adversarial sampling of unknown and high-dimensional conditional
  distributions
Adversarial sampling of unknown and high-dimensional conditional distributions
M. Hassanaly
Andrew Glaws
Karen Stengel
Ryan N. King
GAN
73
21
0
08 Nov 2021
Performance and accuracy assessments of an incompressible fluid solver
  coupled with a deep Convolutional Neural Network
Performance and accuracy assessments of an incompressible fluid solver coupled with a deep Convolutional Neural Network
Ekhi Ajuria Illarramendi
M. Bauerheim
B. Cuenot
89
21
0
20 Sep 2021
Learning the structure of wind: A data-driven nonlocal turbulence model
  for the atmospheric boundary layer
Learning the structure of wind: A data-driven nonlocal turbulence model for the atmospheric boundary layer
B. Keith
U. Khristenko
B. Wohlmuth
55
7
0
23 Jul 2021
Point-Cloud Deep Learning of Porous Media for Permeability Prediction
Point-Cloud Deep Learning of Porous Media for Permeability Prediction
Ali Kashefi
T. Mukerji
3DPCAI4CE
63
35
0
18 Jul 2021
Multi-fidelity Generative Deep Learning Turbulent Flows
Multi-fidelity Generative Deep Learning Turbulent Flows
N. Geneva
N. Zabaras
AI4CE
75
44
0
08 Jun 2020
Enforcing Deterministic Constraints on Generative Adversarial Networks
  for Emulating Physical Systems
Enforcing Deterministic Constraints on Generative Adversarial Networks for Emulating Physical Systems
Zeng Yang
Jin-Long Wu
Heng Xiao
AI4CE
79
17
0
15 Nov 2019
1