Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.02838
Cited By
Accelerator-aware Neural Network Design using AutoML
5 March 2020
Suyog Gupta
Berkin Akin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Accelerator-aware Neural Network Design using AutoML"
19 / 19 papers shown
Title
Evaluating Pre-trained Convolutional Neural Networks and Foundation Models as Feature Extractors for Content-based Medical Image Retrieval
Amirreza Mahbod
Nematollah Saeidi
Sepideh Hatamikia
Ramona Woitek
VLM
MedIm
37
2
0
14 Sep 2024
Accel-NASBench: Sustainable Benchmarking for Accelerator-Aware NAS
Afzal Ahmad
Linfeng Du
Zhiyao Xie
Wei Zhang
26
0
0
09 Apr 2024
Making AI Less "Thirsty": Uncovering and Addressing the Secret Water Footprint of AI Models
Pengfei Li
Jianyi Yang
M. A. Islam
Shaolei Ren
103
124
0
06 Apr 2023
PerfSAGE: Generalized Inference Performance Predictor for Arbitrary Deep Learning Models on Edge Devices
Yuji Chai
Devashree Tripathy
Chu Zhou
Dibakar Gope
Igor Fedorov
Ramon Matas
David Brooks
Gu-Yeon Wei
P. Whatmough
GNN
42
4
0
26 Jan 2023
Enabling Hard Constraints in Differentiable Neural Network and Accelerator Co-Exploration
Deokki Hong
Kanghyun Choi
Hyeyoon Lee
Joonsang Yu
Noseong Park
Youngsok Kim
Jinho Lee
21
3
0
23 Jan 2023
Tech Report: One-stage Lightweight Object Detectors
Deokki Hong
ObjD
23
0
0
31 Oct 2022
Hardware-aware mobile building block evaluation for computer vision
Maxim Bonnaerens
Matthias Anton Freiberger
Marian Verhelst
J. Dambre
30
1
0
26 Aug 2022
Revisiting Architecture-aware Knowledge Distillation: Smaller Models and Faster Search
Taehyeon Kim
Heesoo Myeong
Se-Young Yun
42
2
0
27 Jun 2022
QADAM: Quantization-Aware DNN Accelerator Modeling for Pareto-Optimality
A. Inci
Siri Garudanagiri Virupaksha
Aman Jain
Venkata Vivek Thallam
Ruizhou Ding
Diana Marculescu
MQ
38
2
0
20 May 2022
QAPPA: Quantization-Aware Power, Performance, and Area Modeling of DNN Accelerators
A. Inci
Siri Garudanagiri Virupaksha
Aman Jain
Venkata Vivek Thallam
Ruizhou Ding
Diana Marculescu
MQ
20
5
0
17 May 2022
Searching for Efficient Neural Architectures for On-Device ML on Edge TPUs
Berkin Akin
Suyog Gupta
Yun Long
Anton Spiridonov
Zhuo Wang
Marie White
Haonan Xu
Ping Zhou
Yanqi Zhou
24
9
0
09 Apr 2022
Data-Driven Offline Optimization For Architecting Hardware Accelerators
Aviral Kumar
Amir Yazdanbakhsh
Milad Hashemi
Kevin Swersky
Sergey Levine
34
36
0
20 Oct 2021
Deep Learning on Edge TPUs
A. Kist
Andreas M Kist
43
17
0
31 Aug 2021
Design and Scaffolded Training of an Efficient DNN Operator for Computer Vision on the Edge
Vinod Ganesan
Pratyush Kumar
45
2
0
25 Aug 2021
Rethinking Co-design of Neural Architectures and Hardware Accelerators
Yanqi Zhou
Xuanyi Dong
Berkin Akin
Mingxing Tan
Daiyi Peng
Tianjian Meng
Amir Yazdanbakhsh
Da Huang
Ravi Narayanaswami
James Laudon
71
26
0
17 Feb 2021
A Comprehensive Survey on Hardware-Aware Neural Architecture Search
Hadjer Benmeziane
Kaoutar El Maghraoui
Hamza Ouarnoughi
Smail Niar
Martin Wistuba
Naigang Wang
39
98
0
22 Jan 2021
Nanopore Base Calling on the Edge
Peter Perešíni
V. Boža
Broňa Brejová
T. Vinař
19
38
0
09 Nov 2020
Resource-Aware Pareto-Optimal Automated Machine Learning Platform
Yao Yang
Andrew Nam
M. Nasr-Azadani
Teresa Tung
19
6
0
30 Oct 2020
S3NAS: Fast NPU-aware Neural Architecture Search Methodology
Jaeseong Lee
Duseok Kang
S. Ha
35
10
0
04 Sep 2020
1