ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.04445
  4. Cited By
Convex Hull Monte-Carlo Tree Search
v1v2 (latest)

Convex Hull Monte-Carlo Tree Search

9 March 2020
Michael Painter
Bruno Lacerda
Nick Hawes
ArXiv (abs)PDFHTML

Papers citing "Convex Hull Monte-Carlo Tree Search"

7 / 7 papers shown
Title
Heuristic Search for Multi-Objective Probabilistic Planning
Heuristic Search for Multi-Objective Probabilistic Planning
Dillon Z. Chen
Felipe W. Trevizan
Sylvie Thiébaux
106
6
0
25 Mar 2023
Sample-Efficient Multi-Objective Learning via Generalized Policy
  Improvement Prioritization
Sample-Efficient Multi-Objective Learning via Generalized Policy Improvement Prioritization
L. N. Alegre
A. Bazzan
D. Roijers
Ann Nowé
Bruno C. da Silva
68
30
0
18 Jan 2023
Feature Acquisition using Monte Carlo Tree Search
Feature Acquisition using Monte Carlo Tree Search
Sungsook Lim
Diego Klabjan
M. Shapiro
69
0
0
21 Dec 2022
Monte Carlo Tree Search Algorithms for Risk-Aware and Multi-Objective
  Reinforcement Learning
Monte Carlo Tree Search Algorithms for Risk-Aware and Multi-Objective Reinforcement Learning
Conor F. Hayes
Mathieu Reymond
D. Roijers
Enda Howley
Patrick Mannion
54
4
0
23 Nov 2022
On Solving a Stochastic Shortest-Path Markov Decision Process as
  Probabilistic Inference
On Solving a Stochastic Shortest-Path Markov Decision Process as Probabilistic Inference
Mohamed Baioumy
Bruno Lacerda
Paul Duckworth
Nick Hawes
62
3
0
13 Sep 2021
Monte Carlo Tree Search: A Review of Recent Modifications and
  Applications
Monte Carlo Tree Search: A Review of Recent Modifications and Applications
M. Świechowski
Konrad Godlewski
B. Sawicki
Jacek Mańdziuk
109
276
0
08 Mar 2021
Risk Aware and Multi-Objective Decision Making with Distributional Monte
  Carlo Tree Search
Risk Aware and Multi-Objective Decision Making with Distributional Monte Carlo Tree Search
Conor F. Hayes
Mathieu Reymond
D. Roijers
Enda Howley
Patrick Mannion
40
8
0
01 Feb 2021
1