Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.04919
Cited By
Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems
10 March 2020
J. Willard
X. Jia
Shaoming Xu
M. Steinbach
Vipin Kumar
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems"
17 / 17 papers shown
Title
Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction
Melkamu Mersha
Khang Lam
Joseph Wood
Ali AlShami
Jugal Kalita
XAI
AI4TS
53
26
0
30 Aug 2024
RAIN: Reinforcement Algorithms for Improving Numerical Weather and Climate Models
Pritthijit Nath
Henry Moss
Emily Shuckburgh
Mark Webb
AI4Cl
AI4CE
23
0
0
28 Aug 2024
Physics guided machine learning using simplified theories
Suraj Pawar
Omer San
Burak Aksoylu
Adil Rasheed
T. Kvamsdal
PINN
AI4CE
83
87
0
18 Dec 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
197
2,254
0
18 Oct 2020
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework
C. Jiang
S. Esmaeilzadeh
Kamyar Azizzadenesheli
K. Kashinath
Mustafa A. Mustafa
H. Tchelepi
P. Marcus
P. Prabhat
Anima Anandkumar
AI4CE
170
122
0
01 May 2020
Inverse Problems, Deep Learning, and Symmetry Breaking
Kshitij Tayal
Chieh-Hsin Lai
Vipin Kumar
Ju Sun
AI4CE
60
14
0
20 Mar 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
170
616
0
13 Mar 2020
Physics-Guided Deep Neural Networks for Power Flow Analysis
Xinyue Hu
Haoji Hu
Saurabh Verma
Zhi-Li Zhang
113
120
0
31 Jan 2020
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
126
219
0
29 Sep 2019
Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods
Ferdinando Fioretto
Terrence W.K. Mak
Pascal Van Hentenryck
AI4CE
68
160
0
19 Sep 2019
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CE
BDL
101
355
0
30 Oct 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
4,940
0
05 Dec 2016
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
226
425
0
01 Dec 2016
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
252
1,394
0
01 Dec 2016
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
228
3,202
0
24 Nov 2016
Variational Koopman models: slow collective variables and molecular kinetics from short off-equilibrium simulations
Hao Wu
Feliks Nuske
Fabian Paul
Stefan Klus
P. Koltai
Frank Noé
91
126
0
20 Oct 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
243
9,042
0
06 Jun 2015
1