ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.06820
  4. Cited By
Intra Order-preserving Functions for Calibration of Multi-Class Neural
  Networks

Intra Order-preserving Functions for Calibration of Multi-Class Neural Networks

15 March 2020
Amir M. Rahimi
Amirreza Shaban
Ching-An Cheng
Richard I. Hartley
Byron Boots
    UQCV
ArXivPDFHTML

Papers citing "Intra Order-preserving Functions for Calibration of Multi-Class Neural Networks"

15 / 15 papers shown
Title
Optimizing Estimators of Squared Calibration Errors in Classification
Optimizing Estimators of Squared Calibration Errors in Classification
Sebastian G. Gruber
Francis Bach
69
1
0
24 Feb 2025
Combining Priors with Experience: Confidence Calibration Based on Binomial Process Modeling
Combining Priors with Experience: Confidence Calibration Based on Binomial Process Modeling
Jinzong Dong
Zhaohui Jiang
Dong Pan
Haoyang Yu
56
0
0
14 Dec 2024
C-Adapter: Adapting Deep Classifiers for Efficient Conformal Prediction Sets
C-Adapter: Adapting Deep Classifiers for Efficient Conformal Prediction Sets
Kangdao Liu
Hao Zeng
Jianguo Huang
Huiping Zhuang
Chi-Man Vong
Hongxin Wei
63
4
0
12 Oct 2024
Revisiting Confidence Estimation: Towards Reliable Failure Prediction
Revisiting Confidence Estimation: Towards Reliable Failure Prediction
Fei Zhu
Xu-Yao Zhang
Zhen Cheng
Cheng-Lin Liu
UQCV
46
10
0
05 Mar 2024
Temperature-scaling surprisal estimates improve fit to human reading
  times -- but does it do so for the "right reasons"?
Temperature-scaling surprisal estimates improve fit to human reading times -- but does it do so for the "right reasons"?
Tong Liu
Iza vSkrjanec
Vera Demberg
40
5
0
15 Nov 2023
Scaling of Class-wise Training Losses for Post-hoc Calibration
Scaling of Class-wise Training Losses for Post-hoc Calibration
Seungjin Jung
Seung-Woo Seo
Yonghyun Jeong
Jongwon Choi
29
3
0
19 Jun 2023
Minimum-Risk Recalibration of Classifiers
Minimum-Risk Recalibration of Classifiers
Zeyu Sun
Dogyoon Song
Alfred Hero
30
5
0
18 May 2023
Approaching Test Time Augmentation in the Context of Uncertainty
  Calibration for Deep Neural Networks
Approaching Test Time Augmentation in the Context of Uncertainty Calibration for Deep Neural Networks
Pedro Conde
T. Barros
Rui L. Lopes
C. Premebida
U. J. Nunes
UQCV
17
7
0
11 Apr 2023
Rethinking Confidence Calibration for Failure Prediction
Rethinking Confidence Calibration for Failure Prediction
Fei Zhu
Zhen Cheng
Xu-Yao Zhang
Cheng-Lin Liu
UQCV
14
39
0
06 Mar 2023
Adaptive Temperature Scaling for Robust Calibration of Deep Neural
  Networks
Adaptive Temperature Scaling for Robust Calibration of Deep Neural Networks
Sérgio A. Balanya
Juan Maroñas
Daniel Ramos
OOD
35
13
0
31 Jul 2022
SLOVA: Uncertainty Estimation Using Single Label One-Vs-All Classifier
SLOVA: Uncertainty Estimation Using Single Label One-Vs-All Classifier
Bartosz Wójcik
J. Grela
Marek Śmieja
Krzysztof Misztal
Jacek Tabor
UQCV
31
4
0
28 Jun 2022
On the Usefulness of the Fit-on-the-Test View on Evaluating Calibration of Classifiers
On the Usefulness of the Fit-on-the-Test View on Evaluating Calibration of Classifiers
Markus Kängsepp
Kaspar Valk
Meelis Kull
27
3
0
16 Mar 2022
Exploring Covariate and Concept Shift for Detection and Calibration of
  Out-of-Distribution Data
Exploring Covariate and Concept Shift for Detection and Calibration of Out-of-Distribution Data
Junjiao Tian
Yen-Change Hsu
Yilin Shen
Hongxia Jin
Z. Kira
OODD
19
6
0
28 Oct 2021
On Calibration and Out-of-domain Generalization
On Calibration and Out-of-domain Generalization
Yoav Wald
Amir Feder
D. Greenfeld
Uri Shalit
OODD
13
151
0
20 Feb 2021
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
282
9,136
0
06 Jun 2015
1