Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.09347
Cited By
SAT: Improving Adversarial Training via Curriculum-Based Loss Smoothing
18 March 2020
Chawin Sitawarin
S. Chakraborty
David A. Wagner
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SAT: Improving Adversarial Training via Curriculum-Based Loss Smoothing"
12 / 12 papers shown
Title
Harmonizing Feature Maps: A Graph Convolutional Approach for Enhancing Adversarial Robustness
Kejia Zhang
Juanjuan Weng
Junwei Wu
Guoqing Yang
Shaozi Li
Zhiming Luo
AAML
43
1
0
17 Jun 2024
Catastrophic Overfitting: A Potential Blessing in Disguise
Mengnan Zhao
Lihe Zhang
Yuqiu Kong
Baocai Yin
AAML
41
1
0
28 Feb 2024
Navigating Complexity: Toward Lossless Graph Condensation via Expanding Window Matching
Yuchen Zhang
Tianle Zhang
Kai Wang
Ziyao Guo
Yuxuan Liang
Xavier Bresson
Wei Jin
Yang You
32
23
0
07 Feb 2024
Conserve-Update-Revise to Cure Generalization and Robustness Trade-off in Adversarial Training
Shruthi Gowda
Bahram Zonooz
Elahe Arani
AAML
31
2
0
26 Jan 2024
How Deep Learning Sees the World: A Survey on Adversarial Attacks & Defenses
Joana Cabral Costa
Tiago Roxo
Hugo Manuel Proença
Pedro R. M. Inácio
AAML
37
49
0
18 May 2023
Robust Models are less Over-Confident
Julia Grabinski
Paul Gavrikov
J. Keuper
M. Keuper
AAML
28
24
0
12 Oct 2022
Adversarial Robustness through the Lens of Convolutional Filters
Paul Gavrikov
J. Keuper
30
15
0
05 Apr 2022
LAS-AT: Adversarial Training with Learnable Attack Strategy
Xiaojun Jia
Yong Zhang
Baoyuan Wu
Ke Ma
Jue Wang
Xiaochun Cao
AAML
47
131
0
13 Mar 2022
On the Convergence and Robustness of Adversarial Training
Yisen Wang
Xingjun Ma
James Bailey
Jinfeng Yi
Bowen Zhou
Quanquan Gu
AAML
194
345
0
15 Dec 2021
Increasing-Margin Adversarial (IMA) Training to Improve Adversarial Robustness of Neural Networks
Linhai Ma
Liang Liang
AAML
18
18
0
19 May 2020
Instance adaptive adversarial training: Improved accuracy tradeoffs in neural nets
Yogesh Balaji
Tom Goldstein
Judy Hoffman
AAML
131
103
0
17 Oct 2019
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
281
2,888
0
15 Sep 2016
1