ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.10170
  4. Cited By
Deep Bayesian Gaussian Processes for Uncertainty Estimation in
  Electronic Health Records

Deep Bayesian Gaussian Processes for Uncertainty Estimation in Electronic Health Records

23 March 2020
Yikuan Li
Shishir Rao
A. Hassaine
R. Ramakrishnan
Yajie Zhu
D. Canoy
G. Salimi-Khorshidi
Thomas Lukasiewicz
K. Rahimi
    BDL
    UQCV
ArXivPDFHTML

Papers citing "Deep Bayesian Gaussian Processes for Uncertainty Estimation in Electronic Health Records"

10 / 10 papers shown
Title
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
L. J. L. Lopez
Shaza Elsharief
Dhiyaa Al Jorf
Firas Darwish
Congbo Ma
Farah E. Shamout
107
0
0
04 May 2025
PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation
PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation
S. Chatterjee
Franziska Gaidzik
Alessandro Sciarra
Hendrik Mattern
G. Janiga
Oliver Speck
Andreas Nürnberger
S. Pathiraja
49
0
0
25 Dec 2023
Uncertainty Estimation for Multi-view Data: The Power of Seeing the
  Whole Picture
Uncertainty Estimation for Multi-view Data: The Power of Seeing the Whole Picture
M. Jung
He Zhao
Joanna Dipnall
Belinda Gabbe
Lan Du
UQCV
EDL
57
12
0
06 Oct 2022
Unsupervised Probabilistic Models for Sequential Electronic Health
  Records
Unsupervised Probabilistic Models for Sequential Electronic Health Records
Alan Kaplan
John D Greene
Vincent X. Liu
Priyadip Ray
26
2
0
15 Apr 2022
A Sparse Expansion For Deep Gaussian Processes
A Sparse Expansion For Deep Gaussian Processes
Liang Ding
Rui Tuo
Shahin Shahrampour
13
6
0
11 Dec 2021
Hi-BEHRT: Hierarchical Transformer-based model for accurate prediction
  of clinical events using multimodal longitudinal electronic health records
Hi-BEHRT: Hierarchical Transformer-based model for accurate prediction of clinical events using multimodal longitudinal electronic health records
Yikuan Li
M. Mamouei
G. Salimi-Khorshidi
Shishir Rao
A. Hassaine
D. Canoy
Thomas Lukasiewicz
K. Rahimi
18
75
0
21 Jun 2021
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
  Data
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced Data
Chacha Chen
Junjie Liang
Fenglong Ma
Lucas Glass
Jimeng Sun
Cao Xiao
16
25
0
22 Oct 2020
CLOCS: Contrastive Learning of Cardiac Signals Across Space, Time, and
  Patients
CLOCS: Contrastive Learning of Cardiac Signals Across Space, Time, and Patients
Dani Kiyasseh
T. Zhu
David A. Clifton
22
185
0
27 May 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1