Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.10422
Cited By
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates
23 March 2020
Anastasia Koloskova
Nicolas Loizou
Sadra Boreiri
Martin Jaggi
Sebastian U. Stich
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Unified Theory of Decentralized SGD with Changing Topology and Local Updates"
50 / 51 papers shown
Title
Pseudo-Asynchronous Local SGD: Robust and Efficient Data-Parallel Training
Hiroki Naganuma
Xinzhi Zhang
Man-Chung Yue
Ioannis Mitliagkas
Philipp A. Witte
Russell J. Hewett
Yin Tat Lee
63
0
0
25 Apr 2025
Communication Optimization for Decentralized Learning atop Bandwidth-limited Edge Networks
Tingyang Sun
Tuan Nguyen
Ting He
33
0
0
16 Apr 2025
Decentralized Federated Domain Generalization with Style Sharing: A Formal Modeling and Convergence Analysis
Shahryar Zehtabi
Dong-Jun Han
Seyyedali Hosseinalipour
Christopher G. Brinton
FedML
AI4CE
43
0
0
08 Apr 2025
From Interpretation to Correction: A Decentralized Optimization Framework for Exact Convergence in Federated Learning
Bicheng Ying
Zhe Li
Haibo Yang
FedML
68
0
0
25 Mar 2025
Scalable Decentralized Algorithms for Online Personalized Mean Estimation
Franco Galante
Giovanni Neglia
Emilio Leonardi
FedML
85
1
0
20 Feb 2025
A Bias-Correction Decentralized Stochastic Gradient Algorithm with Momentum Acceleration
Yuchen Hu
Xi Chen
Weidong Liu
Xiaojun Mao
57
0
0
31 Jan 2025
Scalable Decentralized Learning with Teleportation
Yuki Takezawa
Sebastian U. Stich
54
1
0
25 Jan 2025
Understanding Generalization of Federated Learning: the Trade-off between Model Stability and Optimization
Dun Zeng
Zheshun Wu
Shiyu Liu
Yu Pan
Xiaoying Tang
Zenglin Xu
MLT
FedML
71
1
0
25 Nov 2024
OledFL: Unleashing the Potential of Decentralized Federated Learning via Opposite Lookahead Enhancement
Qinglun Li
Miao Zhang
Mengzhu Wang
Quanjun Yin
Li Shen
OODD
FedML
14
0
0
09 Oct 2024
Peer-to-Peer Learning Dynamics of Wide Neural Networks
Shreyas Chaudhari
Srinivasa Pranav
Emile Anand
José M. F. Moura
35
3
0
23 Sep 2024
On the Convergence of a Federated Expectation-Maximization Algorithm
Zhixu Tao
Rajita Chandak
Sanjeev R. Kulkarni
FedML
25
0
0
11 Aug 2024
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Dimitris Oikonomou
Nicolas Loizou
45
4
0
06 Jun 2024
The Limits and Potentials of Local SGD for Distributed Heterogeneous Learning with Intermittent Communication
Kumar Kshitij Patel
Margalit Glasgow
Ali Zindari
Lingxiao Wang
Sebastian U. Stich
Ziheng Cheng
Nirmit Joshi
Nathan Srebro
39
6
0
19 May 2024
Robust Decentralized Learning with Local Updates and Gradient Tracking
Sajjad Ghiasvand
Amirhossein Reisizadeh
Mahnoosh Alizadeh
Ramtin Pedarsani
28
3
0
02 May 2024
Impact of network topology on the performance of Decentralized Federated Learning
Luigi Palmieri
C. Boldrini
Lorenzo Valerio
A. Passarella
M. Conti
19
5
0
28 Feb 2024
FedImpro: Measuring and Improving Client Update in Federated Learning
Zhenheng Tang
Yonggang Zhang
S. Shi
Xinmei Tian
Tongliang Liu
Bo Han
Xiaowen Chu
FedML
13
13
0
10 Feb 2024
Convergence Analysis of Decentralized ASGD
Mauro Dalle Lucca Tosi
Martin Theobald
21
2
0
07 Sep 2023
Distributed Random Reshuffling Methods with Improved Convergence
Kun-Yen Huang
Linli Zhou
Shi Pu
15
4
0
21 Jun 2023
Get More for Less in Decentralized Learning Systems
Akash Dhasade
Anne-Marie Kermarrec
Rafael Pires
Rishi Sharma
Milos Vujasinovic
Jeffrey Wigger
13
7
0
07 Jun 2023
Collaborative Learning via Prediction Consensus
Dongyang Fan
Celestine Mendler-Dünner
Martin Jaggi
FedML
20
7
0
29 May 2023
Beyond Exponential Graph: Communication-Efficient Topologies for Decentralized Learning via Finite-time Convergence
Yuki Takezawa
Ryoma Sato
Han Bao
Kenta Niwa
M. Yamada
24
9
0
19 May 2023
SLowcal-SGD: Slow Query Points Improve Local-SGD for Stochastic Convex Optimization
Kfir Y. Levy
Kfir Y. Levy
FedML
30
2
0
09 Apr 2023
Decentralized Learning Made Practical with Client Sampling
M. Vos
Akash Dhasade
Anne-Marie Kermarrec
Erick Lavoie
J. Pouwelse
Rishi Sharma
11
1
0
27 Feb 2023
Similarity, Compression and Local Steps: Three Pillars of Efficient Communications for Distributed Variational Inequalities
Aleksandr Beznosikov
Martin Takáč
Alexander Gasnikov
21
10
0
15 Feb 2023
Distributed Stochastic Optimization under a General Variance Condition
Kun-Yen Huang
Xiao Li
Shin-Yi Pu
FedML
14
5
0
30 Jan 2023
Entropy-driven Fair and Effective Federated Learning
Lung-Chuang Wang
Zhichao Wang
Sai Praneeth Karimireddy
Xiaoying Tang
Xiaoying Tang
FedML
25
9
0
29 Jan 2023
On the Performance of Gradient Tracking with Local Updates
Edward Duc Hien Nguyen
Sulaiman A. Alghunaim
Kun Yuan
César A. Uribe
22
18
0
10 Oct 2022
Byzantine-Resilient Decentralized Stochastic Optimization with Robust Aggregation Rules
Zhaoxian Wu
Tianyi Chen
Qing Ling
18
36
0
09 Jun 2022
A principled framework for the design and analysis of token algorithms
Hadrien Hendrikx
FedML
14
13
0
30 May 2022
DELTA: Diverse Client Sampling for Fasting Federated Learning
Lung-Chuang Wang
Yongxin Guo
Tao R. Lin
Xiaoying Tang
FedML
16
20
0
27 May 2022
FedAvg with Fine Tuning: Local Updates Lead to Representation Learning
Liam Collins
Hamed Hassani
Aryan Mokhtari
Sanjay Shakkottai
FedML
19
74
0
27 May 2022
Federated Learning with Partial Model Personalization
Krishna Pillutla
Kshitiz Malik
Abdel-rahman Mohamed
Michael G. Rabbat
Maziar Sanjabi
Lin Xiao
FedML
14
152
0
08 Apr 2022
Federated Minimax Optimization: Improved Convergence Analyses and Algorithms
Pranay Sharma
Rohan Panda
Gauri Joshi
P. Varshney
FedML
19
46
0
09 Mar 2022
Robust Federated Learning with Connectivity Failures: A Semi-Decentralized Framework with Collaborative Relaying
M. Yemini
R. Saha
Emre Ozfatura
Deniz Gündüz
Andrea J. Goldsmith
FedML
17
8
0
24 Feb 2022
Towards Federated Learning on Time-Evolving Heterogeneous Data
Yongxin Guo
Tao R. Lin
Xiaoying Tang
FedML
6
30
0
25 Dec 2021
Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications
Khaled B. Letaief
Yuanming Shi
Jianmin Lu
Jianhua Lu
26
414
0
24 Nov 2021
What Do We Mean by Generalization in Federated Learning?
Honglin Yuan
Warren Morningstar
Lin Ning
K. Singhal
OOD
FedML
15
71
0
27 Oct 2021
A Stochastic Newton Algorithm for Distributed Convex Optimization
Brian Bullins
Kumar Kshitij Patel
Ohad Shamir
Nathan Srebro
Blake E. Woodworth
16
15
0
07 Oct 2021
Federated Multi-Task Learning under a Mixture of Distributions
Othmane Marfoq
Giovanni Neglia
A. Bellet
Laetitia Kameni
Richard Vidal
FedML
22
269
0
23 Aug 2021
FedChain: Chained Algorithms for Near-Optimal Communication Cost in Federated Learning
Charlie Hou
K. K. Thekumparampil
Giulia Fanti
Sewoong Oh
FedML
14
14
0
16 Aug 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
173
410
0
14 Jul 2021
ResIST: Layer-Wise Decomposition of ResNets for Distributed Training
Chen Dun
Cameron R. Wolfe
C. Jermaine
Anastasios Kyrillidis
11
21
0
02 Jul 2021
Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients
A. Mitra
Rayana H. Jaafar
George J. Pappas
Hamed Hassani
FedML
55
157
0
14 Feb 2021
Privacy Amplification by Decentralization
Edwige Cyffers
A. Bellet
FedML
40
39
0
09 Dec 2020
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMe
FedML
14
1,266
0
15 Jul 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
17
51
0
08 Jul 2020
Optimal Complexity in Decentralized Training
Yucheng Lu
Christopher De Sa
8
71
0
15 Jun 2020
Minibatch vs Local SGD for Heterogeneous Distributed Learning
Blake E. Woodworth
Kumar Kshitij Patel
Nathan Srebro
FedML
11
198
0
08 Jun 2020
New Convergence Aspects of Stochastic Gradient Algorithms
Lam M. Nguyen
Phuong Ha Nguyen
Peter Richtárik
K. Scheinberg
Martin Takáč
Marten van Dijk
18
65
0
10 Nov 2018
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark W. Schmidt
Francis R. Bach
111
259
0
10 Dec 2012
1
2
Next