ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.13268
  4. Cited By
Architecture Disentanglement for Deep Neural Networks

Architecture Disentanglement for Deep Neural Networks

30 March 2020
Jie Hu
Liujuan Cao
QiXiang Ye
Tong Tong
Shengchuan Zhang
Ke Li
Feiyue Huang
Rongrong Ji
Ling Shao
    AAML
ArXivPDFHTML

Papers citing "Architecture Disentanglement for Deep Neural Networks"

5 / 5 papers shown
Title
On the Relationship Between Interpretability and Explainability in
  Machine Learning
On the Relationship Between Interpretability and Explainability in Machine Learning
Benjamin Leblanc
Pascal Germain
FaML
26
0
0
20 Nov 2023
Interpretable Disentangled Parametrization of Measured BRDF with
  $β$-VAE
Interpretable Disentangled Parametrization of Measured BRDF with βββ-VAE
A. Benamira
Sachin Shah
S. Pattanaik
14
3
0
08 Aug 2022
Disentangled Neural Architecture Search
Disentangled Neural Architecture Search
Xinyue Zheng
Peng Wang
Qigang Wang
Zhongchao Shi
AI4CE
22
4
0
24 Sep 2020
Revisiting the Importance of Individual Units in CNNs via Ablation
Revisiting the Importance of Individual Units in CNNs via Ablation
Bolei Zhou
Yiyou Sun
David Bau
Antonio Torralba
FAtt
59
116
0
07 Jun 2018
Do semantic parts emerge in Convolutional Neural Networks?
Do semantic parts emerge in Convolutional Neural Networks?
Abel Gonzalez-Garcia
Davide Modolo
V. Ferrari
152
113
0
13 Jul 2016
1