Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.14053
Cited By
Inverting Gradients -- How easy is it to break privacy in federated learning?
31 March 2020
Jonas Geiping
Hartmut Bauermeister
Hannah Dröge
Michael Moeller
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Inverting Gradients -- How easy is it to break privacy in federated learning?"
50 / 177 papers shown
Title
Cocktail Party Attack: Breaking Aggregation-Based Privacy in Federated Learning using Independent Component Analysis
Sanjay Kariyappa
Chuan Guo
Kiwan Maeng
Wenjie Xiong
G. E. Suh
Moinuddin K. Qureshi
Hsien-Hsin S. Lee
FedML
13
29
0
12 Sep 2022
Private Read Update Write (PRUW) in Federated Submodel Learning (FSL): Communication Efficient Schemes With and Without Sparsification
Sajani Vithana
S. Ulukus
FedML
13
19
0
09 Sep 2022
On the utility and protection of optimization with differential privacy and classic regularization techniques
Eugenio Lomurno
Matteo matteucci
15
9
0
07 Sep 2022
Exploring Semantic Attributes from A Foundation Model for Federated Learning of Disjoint Label Spaces
Shitong Sun
Chenyang Si
Guile Wu
S. Gong
FedML
23
0
0
29 Aug 2022
Split-U-Net: Preventing Data Leakage in Split Learning for Collaborative Multi-Modal Brain Tumor Segmentation
H. Roth
Ali Hatamizadeh
Ziyue Xu
Can Zhao
Wenqi Li
Andriy Myronenko
Daguang Xu
FedML
37
9
0
22 Aug 2022
MUDGUARD: Taming Malicious Majorities in Federated Learning using Privacy-Preserving Byzantine-Robust Clustering
Rui Wang
Xingkai Wang
H. Chen
Jérémie Decouchant
S. Picek
Z. Liu
K. Liang
29
1
0
22 Aug 2022
Practical Vertical Federated Learning with Unsupervised Representation Learning
Zhaomin Wu
Q. Li
Bingsheng He
FedML
30
36
0
13 Aug 2022
Dropout is NOT All You Need to Prevent Gradient Leakage
Daniel Scheliga
Patrick Mäder
M. Seeland
FedML
22
12
0
12 Aug 2022
How Much Privacy Does Federated Learning with Secure Aggregation Guarantee?
A. Elkordy
Jiang Zhang
Yahya H. Ezzeldin
Konstantinos Psounis
A. Avestimehr
FedML
32
38
0
03 Aug 2022
MUD-PQFed: Towards Malicious User Detection in Privacy-Preserving Quantized Federated Learning
Hua Ma
Qun Li
Yifeng Zheng
Zhi Zhang
Xiaoning Liu
Yan Gao
S. Al-Sarawi
Derek Abbott
FedML
21
3
0
19 Jul 2022
Enhanced Security and Privacy via Fragmented Federated Learning
N. Jebreel
J. Domingo-Ferrer
Alberto Blanco-Justicia
David Sánchez
FedML
13
26
0
13 Jul 2022
DarKnight: An Accelerated Framework for Privacy and Integrity Preserving Deep Learning Using Trusted Hardware
H. Hashemi
Yongqin Wang
M. Annavaram
FedML
18
58
0
30 Jun 2022
zPROBE: Zero Peek Robustness Checks for Federated Learning
Zahra Ghodsi
Mojan Javaheripi
Nojan Sheybani
Xinqiao Zhang
Ke Huang
F. Koushanfar
FedML
34
17
0
24 Jun 2022
An Efficient Industrial Federated Learning Framework for AIoT: A Face Recognition Application
Youlong Ding
Xueyang Wu
Zhitao Li
Zeheng Wu
S. Tan
Qian Xu
Weike Pan
Qiang Yang
FedML
33
4
0
21 Jun 2022
Decentralized adaptive clustering of deep nets is beneficial for client collaboration
Edvin Listo Zec
Ebba Ekblom
Martin Willbo
Olof Mogren
Sarunas Girdzijauskas
OOD
FedML
18
8
0
17 Jun 2022
BlindFL: Vertical Federated Machine Learning without Peeking into Your Data
Fangcheng Fu
Huanran Xue
Yong Cheng
Yangyu Tao
Bin Cui
FedML
12
58
0
16 Jun 2022
A Survey on Gradient Inversion: Attacks, Defenses and Future Directions
Rui Zhang
Song Guo
Junxiao Wang
Xin Xie
Dacheng Tao
27
36
0
15 Jun 2022
Gradient Obfuscation Gives a False Sense of Security in Federated Learning
Kai Yue
Richeng Jin
Chau-Wai Wong
D. Baron
H. Dai
FedML
26
46
0
08 Jun 2022
Rate Distortion Tradeoff in Private Read Update Write in Federated Submodel Learning
Sajani Vithana
S. Ulukus
FedML
24
8
0
07 Jun 2022
Subject Membership Inference Attacks in Federated Learning
Anshuman Suri
Pallika H. Kanani
Virendra J. Marathe
Daniel W. Peterson
30
25
0
07 Jun 2022
Private Federated Submodel Learning with Sparsification
Sajani Vithana
S. Ulukus
FedML
22
10
0
31 May 2022
Secure Federated Clustering
Songze Li
Sizai Hou
Baturalp Buyukates
A. Avestimehr
FedML
23
9
0
31 May 2022
Recovering Private Text in Federated Learning of Language Models
Samyak Gupta
Yangsibo Huang
Zexuan Zhong
Tianyu Gao
Kai Li
Danqi Chen
FedML
25
74
0
17 May 2022
FLAD: Adaptive Federated Learning for DDoS Attack Detection
Roberto Doriguzzi-Corin
Domenico Siracusa
FedML
23
61
0
13 May 2022
On Conditioning the Input Noise for Controlled Image Generation with Diffusion Models
Vedant Singh
Surgan Jandial
Ayush Chopra
Siddharth Ramesh
Balaji Krishnamurthy
V. Balasubramanian
DiffM
30
16
0
08 May 2022
AGIC: Approximate Gradient Inversion Attack on Federated Learning
Jin Xu
Chi Hong
Jiyue Huang
L. Chen
Jérémie Decouchant
AAML
FedML
11
21
0
28 Apr 2022
HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a Collaborative IoT Intrusion Detection
Mohanad Sarhan
Wai Weng Lo
S. Layeghy
Marius Portmann
16
59
0
08 Apr 2022
Multi-Task Distributed Learning using Vision Transformer with Random Patch Permutation
Sangjoon Park
Jong Chul Ye
FedML
MedIm
39
19
0
07 Apr 2022
SwiftAgg+: Achieving Asymptotically Optimal Communication Loads in Secure Aggregation for Federated Learning
Tayyebeh Jahani-Nezhad
M. Maddah-ali
Songze Li
Giuseppe Caire
FedML
21
45
0
24 Mar 2022
Adaptive Aggregation For Federated Learning
K. R. Jayaram
Vinod Muthusamy
Gegi Thomas
Ashish Verma
Mark Purcell
FedML
22
16
0
23 Mar 2022
Closing the Generalization Gap of Cross-silo Federated Medical Image Segmentation
An Xu
Wenqi Li
Pengfei Guo
Dong Yang
H. Roth
Ali Hatamizadeh
Can Zhao
Daguang Xu
Heng-Chiao Huang
Ziyue Xu
FedML
28
51
0
18 Mar 2022
Auto-FedRL: Federated Hyperparameter Optimization for Multi-institutional Medical Image Segmentation
Pengfei Guo
Dong Yang
Ali Hatamizadeh
An Xu
Ziyue Xu
...
F. Patella
Elvira Stellato
G. Carrafiello
Vishal M. Patel
H. Roth
OOD
FedML
17
32
0
12 Mar 2022
Acceleration of Federated Learning with Alleviated Forgetting in Local Training
Chencheng Xu
Zhiwei Hong
Minlie Huang
Tao Jiang
FedML
16
45
0
05 Mar 2022
Privacy Leakage of Adversarial Training Models in Federated Learning Systems
Jingyang Zhang
Yiran Chen
Hai Helen Li
FedML
PICV
27
15
0
21 Feb 2022
Practical Challenges in Differentially-Private Federated Survival Analysis of Medical Data
Shadi Rahimian
Raouf Kerkouche
I. Kurth
Mario Fritz
FedML
8
11
0
08 Feb 2022
Differentially Private Graph Classification with GNNs
Tamara T. Mueller
Johannes C. Paetzold
Chinmay Prabhakar
Dmitrii Usynin
Daniel Rueckert
Georgios Kaissis
40
18
0
05 Feb 2022
Comparative assessment of federated and centralized machine learning
Ibrahim Abdul Majeed
Sagar Kaushik
Aniruddha Bardhan
Venkata Siva Kumar Tadi
Hwang-Ki Min
K. Kumaraguru
Rajasekhara Reddy Duvvuru Muni
FedML
12
6
0
03 Feb 2022
Fishing for User Data in Large-Batch Federated Learning via Gradient Magnification
Yuxin Wen
Jonas Geiping
Liam H. Fowl
Micah Goldblum
Tom Goldstein
FedML
79
92
0
01 Feb 2022
Variational Model Inversion Attacks
Kuan-Chieh Jackson Wang
Yanzhe Fu
Ke Li
Ashish Khisti
R. Zemel
Alireza Makhzani
MIACV
11
95
0
26 Jan 2022
TOFU: Towards Obfuscated Federated Updates by Encoding Weight Updates into Gradients from Proxy Data
Isha Garg
M. Nagaraj
Kaushik Roy
FedML
13
1
0
21 Jan 2022
Reconstructing Training Data with Informed Adversaries
Borja Balle
Giovanni Cherubin
Jamie Hayes
MIACV
AAML
30
158
0
13 Jan 2022
Gradient Leakage Attack Resilient Deep Learning
Wenqi Wei
Ling Liu
SILM
PILM
AAML
15
46
0
25 Dec 2021
Sparsified Secure Aggregation for Privacy-Preserving Federated Learning
Irem Ergun
Hasin Us Sami
Başak Güler
FedML
25
25
0
23 Dec 2021
HarmoFL: Harmonizing Local and Global Drifts in Federated Learning on Heterogeneous Medical Images
Meirui Jiang
Zirui Wang
Qi Dou
FedML
19
123
0
20 Dec 2021
Robust and Privacy-Preserving Collaborative Learning: A Comprehensive Survey
Shangwei Guo
Xu Zhang
Feiyu Yang
Tianwei Zhang
Yan Gan
Tao Xiang
Yang Liu
FedML
18
9
0
19 Dec 2021
Location Leakage in Federated Signal Maps
Evita Bakopoulou
Justin Ley
Jiang Zhang
Konstantinos Psounis
A. Markopoulou
FedML
18
5
0
07 Dec 2021
Improving Differentially Private SGD via Randomly Sparsified Gradients
Junyi Zhu
Matthew B. Blaschko
21
5
0
01 Dec 2021
Evaluating Gradient Inversion Attacks and Defenses in Federated Learning
Yangsibo Huang
Samyak Gupta
Zhao-quan Song
Kai Li
Sanjeev Arora
FedML
AAML
SILM
12
269
0
30 Nov 2021
Privacy-preserving Federated Learning for Residential Short Term Load Forecasting
Joaquín Delgado Fernández
Sergio Potenciano Menci
Chul Min Lee
Gilbert Fridgen
28
53
0
17 Nov 2021
FedCG: Leverage Conditional GAN for Protecting Privacy and Maintaining Competitive Performance in Federated Learning
Yuezhou Wu
Yan Kang
Jiahuan Luo
Yuanqin He
Qiang Yang
FedML
AAML
17
68
0
16 Nov 2021
Previous
1
2
3
4
Next