Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.14053
Cited By
Inverting Gradients -- How easy is it to break privacy in federated learning?
31 March 2020
Jonas Geiping
Hartmut Bauermeister
Hannah Dröge
Michael Moeller
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Inverting Gradients -- How easy is it to break privacy in federated learning?"
27 / 177 papers shown
Title
Federated Learning for Internet of Things: Applications, Challenges, and Opportunities
Tuo Zhang
Lei Gao
Chaoyang He
Mi Zhang
Bhaskar Krishnamachari
Salman Avestimehr
FedML
19
168
0
15 Nov 2021
Bayesian Framework for Gradient Leakage
Mislav Balunović
Dimitar I. Dimitrov
Robin Staab
Martin Vechev
FedML
16
41
0
08 Nov 2021
Privacy attacks for automatic speech recognition acoustic models in a federated learning framework
N. Tomashenko
Salima Mdhaffar
Marc Tommasi
Yannick Esteve
J. Bonastre
33
25
0
06 Nov 2021
Confidential Machine Learning Computation in Untrusted Environments: A Systems Security Perspective
Kha Dinh Duy
Taehyun Noh
Siwon Huh
Hojoon Lee
56
9
0
05 Nov 2021
What Do We Mean by Generalization in Federated Learning?
Honglin Yuan
Warren Morningstar
Lin Ning
K. Singhal
OOD
FedML
24
71
0
27 Oct 2021
Robbing the Fed: Directly Obtaining Private Data in Federated Learning with Modified Models
Liam H. Fowl
Jonas Geiping
W. Czaja
Micah Goldblum
Tom Goldstein
FedML
10
144
0
25 Oct 2021
SoK: Machine Learning Governance
Varun Chandrasekaran
Hengrui Jia
Anvith Thudi
Adelin Travers
Mohammad Yaghini
Nicolas Papernot
30
16
0
20 Sep 2021
Privacy-Preserving Machine Learning: Methods, Challenges and Directions
Runhua Xu
Nathalie Baracaldo
J. Joshi
24
100
0
10 Aug 2021
Private Retrieval, Computing and Learning: Recent Progress and Future Challenges
S. Ulukus
Salman Avestimehr
Michael C. Gastpar
S. Jafar
Ravi Tandon
Chao Tian
FedML
20
64
0
30 Jul 2021
Defending against Reconstruction Attack in Vertical Federated Learning
Jiankai Sun
Yuanshun Yao
Weihao Gao
Junyuan Xie
Chong-Jun Wang
AAML
FedML
6
28
0
21 Jul 2021
Gradient-Leakage Resilient Federated Learning
Wenqi Wei
Ling Liu
Yanzhao Wu
Gong Su
Arun Iyengar
FedML
19
81
0
02 Jul 2021
Federated Learning with Buffered Asynchronous Aggregation
John Nguyen
Kshitiz Malik
Hongyuan Zhan
Ashkan Yousefpour
Michael G. Rabbat
Mani Malek
Dzmitry Huba
FedML
13
288
0
11 Jun 2021
Rethinking Architecture Design for Tackling Data Heterogeneity in Federated Learning
Liangqiong Qu
Yuyin Zhou
Paul Pu Liang
Yingda Xia
Feifei Wang
Ehsan Adeli
L. Fei-Fei
D. Rubin
FedML
AI4CE
19
173
0
10 Jun 2021
Vertical Federated Learning without Revealing Intersection Membership
Jiankai Sun
Xin Yang
Yuanshun Yao
Aonan Zhang
Weihao Gao
Junyuan Xie
Chong-Jun Wang
FedML
23
37
0
10 Jun 2021
Privacy-Preserving Federated Learning on Partitioned Attributes
Shuang Zhang
Liyao Xiang
Xi Yu
Pengzhi Chu
Yingqi Chen
Chen Cen
L. Wang
FedML
16
2
0
29 Apr 2021
From Distributed Machine Learning to Federated Learning: A Survey
Ji Liu
Jizhou Huang
Yang Zhou
Xuhong Li
Shilei Ji
Haoyi Xiong
Dejing Dou
FedML
OOD
44
243
0
29 Apr 2021
Property Inference Attacks on Convolutional Neural Networks: Influence and Implications of Target Model's Complexity
Mathias Parisot
Balázs Pejó
Dayana Spagnuelo
MIACV
19
33
0
27 Apr 2021
See through Gradients: Image Batch Recovery via GradInversion
Hongxu Yin
Arun Mallya
Arash Vahdat
J. Álvarez
Jan Kautz
Pavlo Molchanov
FedML
23
459
0
15 Apr 2021
Privacy-preserving medical image analysis
Alexander Ziller
Jonathan Passerat-Palmbach
T. Ryffel
Dmitrii Usynin
Andrew Trask
...
Jason V. Mancuso
Marcus R. Makowski
Daniel Rueckert
R. Braren
Georgios Kaissis
16
8
0
10 Dec 2020
Privacy Amplification by Decentralization
Edwige Cyffers
A. Bellet
FedML
42
39
0
09 Dec 2020
Provable Defense against Privacy Leakage in Federated Learning from Representation Perspective
Jingwei Sun
Ang Li
Binghui Wang
Huanrui Yang
Hai Li
Yiran Chen
FedML
11
162
0
08 Dec 2020
A Federated Learning Approach to Anomaly Detection in Smart Buildings
Raed Abdel Sater
A. Ben Hamza
9
121
0
20 Oct 2020
R-GAP: Recursive Gradient Attack on Privacy
Junyi Zhu
Matthew Blaschko
FedML
6
132
0
15 Oct 2020
Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching
Jonas Geiping
Liam H. Fowl
W. R. Huang
W. Czaja
Gavin Taylor
Michael Moeller
Tom Goldstein
AAML
19
215
0
04 Sep 2020
Byzantine-Resilient Secure Federated Learning
Jinhyun So
Başak Güler
A. Avestimehr
FedML
11
236
0
21 Jul 2020
Rethinking Privacy Preserving Deep Learning: How to Evaluate and Thwart Privacy Attacks
Lixin Fan
Kam Woh Ng
Ce Ju
Tianyu Zhang
Chang Liu
Chee Seng Chan
Qiang Yang
MIACV
9
63
0
20 Jun 2020
Introducing the VoicePrivacy Initiative
N. Tomashenko
B. M. L. Srivastava
Xin Wang
Emmanuel Vincent
A. Nautsch
...
Nicholas W. D. Evans
J. Patino
J. Bonastre
Paul-Gauthier Noé
Massimiliano Todisco
28
127
0
04 May 2020
Previous
1
2
3
4