ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.00464
  4. Cited By
Deep transformation models: Tackling complex regression problems with
  neural network based transformation models

Deep transformation models: Tackling complex regression problems with neural network based transformation models

1 April 2020
Beate Sick
Torsten Hothorn
Oliver Durr
    MedImBDLOODUQCV
ArXiv (abs)PDFHTML

Papers citing "Deep transformation models: Tackling complex regression problems with neural network based transformation models"

19 / 19 papers shown
Title
Hybrid Bernstein Normalizing Flows for Flexible Multivariate Density Regression with Interpretable Marginals
Hybrid Bernstein Normalizing Flows for Flexible Multivariate Density Regression with Interpretable Marginals
Marcel Arpogaus
Thomas Kneib
Thomas Nagler
David Rügamer
46
0
0
20 May 2025
Interpretable Neural Causal Models with TRAM-DAGs
Interpretable Neural Causal Models with TRAM-DAGs
Beate Sick
Oliver Durr
CML
78
1
0
20 Mar 2025
How Inverse Conditional Flows Can Serve as a Substitute for
  Distributional Regression
How Inverse Conditional Flows Can Serve as a Substitute for Distributional Regression
Lucas Kook
Chris Kolb
Philipp Schiele
Daniel Dold
Marcel Arpogaus
...
Philipp F. M. Baumann
Philipp Kopper
Tobias Pielok
Emilio Dorigatti
David Rügamer
BDLAI4TS
74
2
0
08 May 2024
Bayesian Semi-structured Subspace Inference
Bayesian Semi-structured Subspace Inference
Daniel Dold
David Rügamer
Beate Sick
Oliver Durr
BDL
53
1
0
23 Jan 2024
Single-shot Bayesian approximation for neural networks
Single-shot Bayesian approximation for neural networks
K. Brach
Beate Sick
Oliver Durr
BDLUQCV
29
0
0
24 Aug 2023
A New PHO-rmula for Improved Performance of Semi-Structured Networks
A New PHO-rmula for Improved Performance of Semi-Structured Networks
David Rügamer
55
10
0
01 Jun 2023
An interpretable neural network-based non-proportional odds model for
  ordinal regression
An interpretable neural network-based non-proportional odds model for ordinal regression
Akifumi Okuno
Kazuharu Harada
63
1
0
31 Mar 2023
Estimating Conditional Distributions with Neural Networks using R
  package deeptrafo
Estimating Conditional Distributions with Neural Networks using R package deeptrafo
Lucas Kook
Philipp F. M. Baumann
Oliver Durr
Beate Sick
David Rügamer
58
6
0
24 Nov 2022
Deep conditional transformation models for survival analysis
Deep conditional transformation models for survival analysis
Gabriele Campanella
Lucas Kook
I. Häggström
Torsten Hothorn
Thomas J. Fuchs
43
2
0
20 Oct 2022
Sample-based Uncertainty Quantification with a Single Deterministic
  Neural Network
Sample-based Uncertainty Quantification with a Single Deterministic Neural Network
T. Kanazawa
Chetan Gupta
UQCV
79
4
0
17 Sep 2022
Deep interpretable ensembles
Deep interpretable ensembles
Lucas Kook
Andrea Götschi
Philipp F. M. Baumann
Torsten Hothorn
Beate Sick
UQCV
58
9
0
25 May 2022
Short-Term Density Forecasting of Low-Voltage Load using
  Bernstein-Polynomial Normalizing Flows
Short-Term Density Forecasting of Low-Voltage Load using Bernstein-Polynomial Normalizing Flows
M. Arpogaus
Marcus Voss
Beate Sick
Mark Nigge-Uricher
Oliver Durr
65
18
0
29 Apr 2022
Distributional Gradient Boosting Machines
Distributional Gradient Boosting Machines
Alexander März
Thomas Kneib
AI4CE
66
7
0
02 Apr 2022
Bernstein Flows for Flexible Posteriors in Variational Bayes
Bernstein Flows for Flexible Posteriors in Variational Bayes
Oliver Durr
Stephan Hörling
Daniel Dold
Ivonne Kovylov
Beate Sick
BDL
86
4
0
11 Feb 2022
Uncertainty estimation under model misspecification in neural network
  regression
Uncertainty estimation under model misspecification in neural network regression
Maria R. Cervera
Rafael Dätwyler
Francesco DÁngelo
Hamza Keurti
Benjamin Grewe
Christian Henning
58
6
0
23 Nov 2021
Probabilistic Time Series Forecasts with Autoregressive Transformation
  Models
Probabilistic Time Series Forecasts with Autoregressive Transformation Models
David Rügamer
Philipp F. M. Baumann
Thomas Kneib
Torsten Hothorn
AI4TS
104
13
0
15 Oct 2021
Transformation Models for Flexible Posteriors in Variational Bayes
Transformation Models for Flexible Posteriors in Variational Bayes
Sefan Hörtling
Daniel Dold
Oliver Durr
Beate Sick
40
0
0
01 Jun 2021
Deep and interpretable regression models for ordinal outcomes
Deep and interpretable regression models for ordinal outcomes
Lucas Kook
L. Herzog
Torsten Hothorn
Oliver Durr
Beate Sick
62
15
0
16 Oct 2020
Deep Conditional Transformation Models
Deep Conditional Transformation Models
Philipp F. M. Baumann
Torsten Hothorn
David Rügamer
46
29
0
15 Oct 2020
1