Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.00464
Cited By
Deep transformation models: Tackling complex regression problems with neural network based transformation models
1 April 2020
Beate Sick
Torsten Hothorn
Oliver Durr
MedIm
BDL
OOD
UQCV
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep transformation models: Tackling complex regression problems with neural network based transformation models"
19 / 19 papers shown
Title
Hybrid Bernstein Normalizing Flows for Flexible Multivariate Density Regression with Interpretable Marginals
Marcel Arpogaus
Thomas Kneib
Thomas Nagler
David Rügamer
46
0
0
20 May 2025
Interpretable Neural Causal Models with TRAM-DAGs
Beate Sick
Oliver Durr
CML
78
1
0
20 Mar 2025
How Inverse Conditional Flows Can Serve as a Substitute for Distributional Regression
Lucas Kook
Chris Kolb
Philipp Schiele
Daniel Dold
Marcel Arpogaus
...
Philipp F. M. Baumann
Philipp Kopper
Tobias Pielok
Emilio Dorigatti
David Rügamer
BDL
AI4TS
74
2
0
08 May 2024
Bayesian Semi-structured Subspace Inference
Daniel Dold
David Rügamer
Beate Sick
Oliver Durr
BDL
53
1
0
23 Jan 2024
Single-shot Bayesian approximation for neural networks
K. Brach
Beate Sick
Oliver Durr
BDL
UQCV
29
0
0
24 Aug 2023
A New PHO-rmula for Improved Performance of Semi-Structured Networks
David Rügamer
55
10
0
01 Jun 2023
An interpretable neural network-based non-proportional odds model for ordinal regression
Akifumi Okuno
Kazuharu Harada
63
1
0
31 Mar 2023
Estimating Conditional Distributions with Neural Networks using R package deeptrafo
Lucas Kook
Philipp F. M. Baumann
Oliver Durr
Beate Sick
David Rügamer
58
6
0
24 Nov 2022
Deep conditional transformation models for survival analysis
Gabriele Campanella
Lucas Kook
I. Häggström
Torsten Hothorn
Thomas J. Fuchs
43
2
0
20 Oct 2022
Sample-based Uncertainty Quantification with a Single Deterministic Neural Network
T. Kanazawa
Chetan Gupta
UQCV
79
4
0
17 Sep 2022
Deep interpretable ensembles
Lucas Kook
Andrea Götschi
Philipp F. M. Baumann
Torsten Hothorn
Beate Sick
UQCV
58
9
0
25 May 2022
Short-Term Density Forecasting of Low-Voltage Load using Bernstein-Polynomial Normalizing Flows
M. Arpogaus
Marcus Voss
Beate Sick
Mark Nigge-Uricher
Oliver Durr
65
18
0
29 Apr 2022
Distributional Gradient Boosting Machines
Alexander März
Thomas Kneib
AI4CE
66
7
0
02 Apr 2022
Bernstein Flows for Flexible Posteriors in Variational Bayes
Oliver Durr
Stephan Hörling
Daniel Dold
Ivonne Kovylov
Beate Sick
BDL
86
4
0
11 Feb 2022
Uncertainty estimation under model misspecification in neural network regression
Maria R. Cervera
Rafael Dätwyler
Francesco DÁngelo
Hamza Keurti
Benjamin Grewe
Christian Henning
58
6
0
23 Nov 2021
Probabilistic Time Series Forecasts with Autoregressive Transformation Models
David Rügamer
Philipp F. M. Baumann
Thomas Kneib
Torsten Hothorn
AI4TS
104
13
0
15 Oct 2021
Transformation Models for Flexible Posteriors in Variational Bayes
Sefan Hörtling
Daniel Dold
Oliver Durr
Beate Sick
40
0
0
01 Jun 2021
Deep and interpretable regression models for ordinal outcomes
Lucas Kook
L. Herzog
Torsten Hothorn
Oliver Durr
Beate Sick
62
15
0
16 Oct 2020
Deep Conditional Transformation Models
Philipp F. M. Baumann
Torsten Hothorn
David Rügamer
46
29
0
15 Oct 2020
1