ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.01643
  4. Cited By
Quantifying Data Augmentation for LiDAR based 3D Object Detection

Quantifying Data Augmentation for LiDAR based 3D Object Detection

3 April 2020
Martin Hahner
Dengxin Dai
Alexander Liniger
Luc Van Gool
    3DPC
ArXivPDFHTML

Papers citing "Quantifying Data Augmentation for LiDAR based 3D Object Detection"

4 / 4 papers shown
Title
Easy-Poly: A Easy Polyhedral Framework For 3D Multi-Object Tracking
Easy-Poly: A Easy Polyhedral Framework For 3D Multi-Object Tracking
Peng Zhang
Xin Li
Xin Lin
Liang He
VOT
83
0
0
25 Feb 2025
A Survey of Label-Efficient Deep Learning for 3D Point Clouds
A Survey of Label-Efficient Deep Learning for 3D Point Clouds
Aoran Xiao
Xiaoqin Zhang
Ling Shao
Shijian Lu
3DPC
38
18
0
31 May 2023
Panoptic-PolarNet: Proposal-free LiDAR Point Cloud Panoptic Segmentation
Panoptic-PolarNet: Proposal-free LiDAR Point Cloud Panoptic Segmentation
Zixiang Zhou
Yang Zhang
H. Foroosh
3DPC
29
124
0
27 Mar 2021
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud
Jaeseok Choi
Yeji Song
Nojun Kwak
3DPC
30
63
0
27 Jul 2020
1