Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.01806
Cited By
On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs
3 April 2020
Yeonjong Shin
Jérome Darbon
George Karniadakis
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs"
37 / 37 papers shown
Title
Label Propagation Training Schemes for Physics-Informed Neural Networks and Gaussian Processes
Ming Zhong
Dehao Liu
Raymundo Arroyave
U. Braga-Neto
AI4CE
SSL
26
1
0
08 Apr 2024
Approximation of Solution Operators for High-dimensional PDEs
Nathan Gaby
Xiaojing Ye
30
0
0
18 Jan 2024
Moving Sampling Physics-informed Neural Networks induced by Moving Mesh PDE
Yu Yang
Qihong Yang
Yangtao Deng
Qiaolin He
16
3
0
14 Nov 2023
Neural oscillators for generalization of physics-informed machine learning
Taniya Kapoor
Abhishek Chandra
D. Tartakovsky
Hongrui Wang
Alfredo Núñez
R. Dollevoet
AI4CE
32
11
0
17 Aug 2023
Auxiliary-Tasks Learning for Physics-Informed Neural Network-Based Partial Differential Equations Solving
Junjun Yan
Xinhai Chen
Zhichao Wang
Enqiang Zhou
Jie Liu
PINN
AI4CE
31
1
0
12 Jul 2023
ST-PINN: A Self-Training Physics-Informed Neural Network for Partial Differential Equations
Junjun Yan
Xinhai Chen
Zhichao Wang
Enqiang Zhoui
Jie Liu
PINN
DiffM
AI4CE
32
10
0
15 Jun 2023
Convergence Analysis of the Deep Galerkin Method for Weak Solutions
Yuling Jiao
Yanming Lai
Yang Wang
Haizhao Yang
Yunfei Yang
26
3
0
05 Feb 2023
Neural Control of Parametric Solutions for High-dimensional Evolution PDEs
Nathan Gaby
X. Ye
Haomin Zhou
19
6
0
31 Jan 2023
Physics-Informed Neural Network Method for Parabolic Differential Equations with Sharply Perturbed Initial Conditions
Yifei Zong
Qizhi He
A. Tartakovsky
PINN
22
18
0
18 Aug 2022
wPINNs: Weak Physics informed neural networks for approximating entropy solutions of hyperbolic conservation laws
Tim De Ryck
Siddhartha Mishra
Roberto Molinaro
PINN
40
29
0
18 Jul 2022
Informed Learning by Wide Neural Networks: Convergence, Generalization and Sampling Complexity
Jianyi Yang
Shaolei Ren
35
3
0
02 Jul 2022
Generic bounds on the approximation error for physics-informed (and) operator learning
Tim De Ryck
Siddhartha Mishra
PINN
63
59
0
23 May 2022
Error estimates for physics informed neural networks approximating the Navier-Stokes equations
Tim De Ryck
Ameya Dilip Jagtap
S. Mishra
PINN
49
115
0
17 Mar 2022
Physics-informed neural networks for inverse problems in supersonic flows
Ameya Dilip Jagtap
Zhiping Mao
Nikolaus Adams
George Karniadakis
PINN
26
201
0
23 Feb 2022
Learning Physics-Informed Neural Networks without Stacked Back-propagation
Di He
Shanda Li
Wen-Wu Shi
Xiaotian Gao
Jia Zhang
Jiang Bian
Liwei Wang
Tie-Yan Liu
DiffM
PINN
AI4CE
18
23
0
18 Feb 2022
State-of-the-Art Review of Design of Experiments for Physics-Informed Deep Learning
Sourav Das
S. Tesfamariam
PINN
AI4CE
26
19
0
13 Feb 2022
Solving time dependent Fokker-Planck equations via temporal normalizing flow
Xiaodong Feng
Li Zeng
Tao Zhou
AI4CE
36
25
0
28 Dec 2021
Physics informed neural networks for continuum micromechanics
Alexander Henkes
Henning Wessels
R. Mahnken
PINN
AI4CE
32
139
0
14 Oct 2021
Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs
Tim De Ryck
Siddhartha Mishra
PINN
26
100
0
28 Jun 2021
On the Representation of Solutions to Elliptic PDEs in Barron Spaces
Ziang Chen
Jianfeng Lu
Yulong Lu
38
27
0
14 Jun 2021
Accelerating Dynamical System Simulations with Contracting and Physics-Projected Neural-Newton Solvers
Samuel C. Chevalier
Jochen Stiasny
Spyros Chatzivasileiadis
33
3
0
04 Jun 2021
Physics Informed Convex Artificial Neural Networks (PICANNs) for Optimal Transport based Density Estimation
Amanpreet Singh
Martin Bauer
S. Joshi
OT
6
1
0
02 Apr 2021
Physics-informed neural networks for the shallow-water equations on the sphere
Alexander Bihlo
R. Popovych
14
77
0
01 Apr 2021
Solving and Learning Nonlinear PDEs with Gaussian Processes
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
34
153
0
24 Mar 2021
A Deep Learning approach to Reduced Order Modelling of Parameter Dependent Partial Differential Equations
N. R. Franco
Andrea Manzoni
P. Zunino
33
45
0
10 Mar 2021
Reproducing Activation Function for Deep Learning
Senwei Liang
Liyao Lyu
Chunmei Wang
Haizhao Yang
36
21
0
13 Jan 2021
Hybrid FEM-NN models: Combining artificial neural networks with the finite element method
Sebastian K. Mitusch
S. Funke
M. Kuchta
AI4CE
44
94
0
04 Jan 2021
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
93
126
0
14 Dec 2020
Energy-based error bound of physics-informed neural network solutions in elasticity
Mengwu Guo
E. Haghighat
PINN
56
28
0
18 Oct 2020
Large-scale Neural Solvers for Partial Differential Equations
Patrick Stiller
Friedrich Bethke
M. Böhme
R. Pausch
Sunna Torge
A. Debus
J. Vorberger
Michael Bussmann
Nico Hoffmann
AI4CE
16
26
0
08 Sep 2020
Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism
L. McClenny
U. Braga-Neto
PINN
28
446
0
07 Sep 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
33
881
0
28 Jul 2020
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating a class of inverse problems for PDEs
Siddhartha Mishra
Roberto Molinaro
PINN
16
262
0
29 Jun 2020
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs
Siddhartha Mishra
Roberto Molinaro
PINN
30
171
0
29 Jun 2020
DiscretizationNet: A Machine-Learning based solver for Navier-Stokes Equations using Finite Volume Discretization
Rishikesh Ranade
C. Hill
Jay Pathak
AI4CE
59
123
0
17 May 2020
Model Reduction and Neural Networks for Parametric PDEs
K. Bhattacharya
Bamdad Hosseini
Nikola B. Kovachki
Andrew M. Stuart
24
319
0
07 May 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
135
510
0
11 Mar 2020
1