ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.03383
  4. Cited By
Attribution in Scale and Space

Attribution in Scale and Space

3 April 2020
Shawn Xu
Subhashini Venugopalan
Mukund Sundararajan
    FAtt
    BDL
ArXivPDFHTML

Papers citing "Attribution in Scale and Space"

18 / 18 papers shown
Title
Attention Mechanisms Don't Learn Additive Models: Rethinking Feature Importance for Transformers
Attention Mechanisms Don't Learn Additive Models: Rethinking Feature Importance for Transformers
Tobias Leemann
Alina Fastowski
Felix Pfeiffer
Gjergji Kasneci
62
5
0
10 Jan 2025
Unlearning-based Neural Interpretations
Unlearning-based Neural Interpretations
Ching Lam Choi
Alexandre Duplessis
Serge Belongie
FAtt
49
0
0
10 Oct 2024
Riemann Sum Optimization for Accurate Integrated Gradients Computation
Riemann Sum Optimization for Accurate Integrated Gradients Computation
Swadesh Swain
Shree Singhi
28
0
0
05 Oct 2024
Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations
Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations
Andrzej Perzanowski
Tony Lindeberg
53
1
0
17 Sep 2024
DiffExplainer: Unveiling Black Box Models Via Counterfactual Generation
DiffExplainer: Unveiling Black Box Models Via Counterfactual Generation
Yingying Fang
Shuang Wu
Zihao Jin
Caiwen Xu
Shiyi Wang
Simon Walsh
Guang Yang
MedIm
42
4
0
21 Jun 2024
Manifold Integrated Gradients: Riemannian Geometry for Feature
  Attribution
Manifold Integrated Gradients: Riemannian Geometry for Feature Attribution
Eslam Zaher
Maciej Trzaskowski
Quan Nguyen
Fred Roosta
AAML
29
4
0
16 May 2024
MAEA: Multimodal Attribution for Embodied AI
MAEA: Multimodal Attribution for Embodied AI
Vidhi Jain
Jayant Sravan Tamarapalli
Sahiti Yerramilli
Yonatan Bisk
39
0
0
25 Jul 2023
TAX: Tendency-and-Assignment Explainer for Semantic Segmentation with
  Multi-Annotators
TAX: Tendency-and-Assignment Explainer for Semantic Segmentation with Multi-Annotators
Yuan Cheng
Zu-Yun Shiau
Fu-En Yang
Yu-Chiang Frank Wang
39
2
0
19 Feb 2023
On the Relationship Between Explanation and Prediction: A Causal View
On the Relationship Between Explanation and Prediction: A Causal View
Amir-Hossein Karimi
Krikamol Muandet
Simon Kornblith
Bernhard Schölkopf
Been Kim
FAtt
CML
37
14
0
13 Dec 2022
Quantitative Metrics for Evaluating Explanations of Video DeepFake
  Detectors
Quantitative Metrics for Evaluating Explanations of Video DeepFake Detectors
Federico Baldassarre
Quentin Debard
Gonzalo Fiz Pontiveros
Tri Kurniawan Wijaya
44
4
0
07 Oct 2022
A Rigorous Study of Integrated Gradients Method and Extensions to
  Internal Neuron Attributions
A Rigorous Study of Integrated Gradients Method and Extensions to Internal Neuron Attributions
Daniel Lundstrom
Tianjian Huang
Meisam Razaviyayn
FAtt
24
64
0
24 Feb 2022
WaveFake: A Data Set to Facilitate Audio Deepfake Detection
WaveFake: A Data Set to Facilitate Audio Deepfake Detection
Joel Frank
Lea Schonherr
DiffM
129
123
0
04 Nov 2021
Attribution of Predictive Uncertainties in Classification Models
Attribution of Predictive Uncertainties in Classification Models
Iker Perez
Piotr Skalski
Alec E. Barns-Graham
Jason Wong
David Sutton
UQCV
32
6
0
19 Jul 2021
Explaining in Style: Training a GAN to explain a classifier in
  StyleSpace
Explaining in Style: Training a GAN to explain a classifier in StyleSpace
Oran Lang
Yossi Gandelsman
Michal Yarom
Yoav Wald
G. Elidan
...
William T. Freeman
Phillip Isola
Amir Globerson
Michal Irani
Inbar Mosseri
GAN
45
152
0
27 Apr 2021
Group-CAM: Group Score-Weighted Visual Explanations for Deep
  Convolutional Networks
Group-CAM: Group Score-Weighted Visual Explanations for Deep Convolutional Networks
Qing-Long Zhang
Lu Rao
Yubin Yang
16
58
0
25 Mar 2021
Explainable Person Re-Identification with Attribute-guided Metric
  Distillation
Explainable Person Re-Identification with Attribute-guided Metric Distillation
Xiaodong Chen
Xinchen Liu
Wu Liu
Xiaoping Zhang
Yongdong Zhang
Tao Mei
53
44
0
02 Mar 2021
Explaining by Removing: A Unified Framework for Model Explanation
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
48
242
0
21 Nov 2020
Feature Removal Is a Unifying Principle for Model Explanation Methods
Feature Removal Is a Unifying Principle for Model Explanation Methods
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
33
33
0
06 Nov 2020
1