Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.03383
Cited By
Attribution in Scale and Space
3 April 2020
Shawn Xu
Subhashini Venugopalan
Mukund Sundararajan
FAtt
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Attribution in Scale and Space"
18 / 18 papers shown
Title
Attention Mechanisms Don't Learn Additive Models: Rethinking Feature Importance for Transformers
Tobias Leemann
Alina Fastowski
Felix Pfeiffer
Gjergji Kasneci
62
5
0
10 Jan 2025
Unlearning-based Neural Interpretations
Ching Lam Choi
Alexandre Duplessis
Serge Belongie
FAtt
49
0
0
10 Oct 2024
Riemann Sum Optimization for Accurate Integrated Gradients Computation
Swadesh Swain
Shree Singhi
28
0
0
05 Oct 2024
Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations
Andrzej Perzanowski
Tony Lindeberg
53
1
0
17 Sep 2024
DiffExplainer: Unveiling Black Box Models Via Counterfactual Generation
Yingying Fang
Shuang Wu
Zihao Jin
Caiwen Xu
Shiyi Wang
Simon Walsh
Guang Yang
MedIm
42
4
0
21 Jun 2024
Manifold Integrated Gradients: Riemannian Geometry for Feature Attribution
Eslam Zaher
Maciej Trzaskowski
Quan Nguyen
Fred Roosta
AAML
29
4
0
16 May 2024
MAEA: Multimodal Attribution for Embodied AI
Vidhi Jain
Jayant Sravan Tamarapalli
Sahiti Yerramilli
Yonatan Bisk
39
0
0
25 Jul 2023
TAX: Tendency-and-Assignment Explainer for Semantic Segmentation with Multi-Annotators
Yuan Cheng
Zu-Yun Shiau
Fu-En Yang
Yu-Chiang Frank Wang
39
2
0
19 Feb 2023
On the Relationship Between Explanation and Prediction: A Causal View
Amir-Hossein Karimi
Krikamol Muandet
Simon Kornblith
Bernhard Schölkopf
Been Kim
FAtt
CML
37
14
0
13 Dec 2022
Quantitative Metrics for Evaluating Explanations of Video DeepFake Detectors
Federico Baldassarre
Quentin Debard
Gonzalo Fiz Pontiveros
Tri Kurniawan Wijaya
44
4
0
07 Oct 2022
A Rigorous Study of Integrated Gradients Method and Extensions to Internal Neuron Attributions
Daniel Lundstrom
Tianjian Huang
Meisam Razaviyayn
FAtt
24
64
0
24 Feb 2022
WaveFake: A Data Set to Facilitate Audio Deepfake Detection
Joel Frank
Lea Schonherr
DiffM
129
123
0
04 Nov 2021
Attribution of Predictive Uncertainties in Classification Models
Iker Perez
Piotr Skalski
Alec E. Barns-Graham
Jason Wong
David Sutton
UQCV
32
6
0
19 Jul 2021
Explaining in Style: Training a GAN to explain a classifier in StyleSpace
Oran Lang
Yossi Gandelsman
Michal Yarom
Yoav Wald
G. Elidan
...
William T. Freeman
Phillip Isola
Amir Globerson
Michal Irani
Inbar Mosseri
GAN
45
152
0
27 Apr 2021
Group-CAM: Group Score-Weighted Visual Explanations for Deep Convolutional Networks
Qing-Long Zhang
Lu Rao
Yubin Yang
16
58
0
25 Mar 2021
Explainable Person Re-Identification with Attribute-guided Metric Distillation
Xiaodong Chen
Xinchen Liu
Wu Liu
Xiaoping Zhang
Yongdong Zhang
Tao Mei
53
44
0
02 Mar 2021
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
48
242
0
21 Nov 2020
Feature Removal Is a Unifying Principle for Model Explanation Methods
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
33
33
0
06 Nov 2020
1