ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.06302
  4. Cited By
Few-Shot Single-View 3-D Object Reconstruction with Compositional Priors

Few-Shot Single-View 3-D Object Reconstruction with Compositional Priors

14 April 2020
Mateusz Michalkiewicz
Sarah Parisot
Stavros Tsogkas
Mahsa Baktash
Anders P. Eriksson
Eugene Belilovsky
    3DV
ArXivPDFHTML

Papers citing "Few-Shot Single-View 3-D Object Reconstruction with Compositional Priors"

5 / 5 papers shown
Title
A Kendall Shape Space Approach to 3D Shape Estimation from 2D Landmarks
A Kendall Shape Space Approach to 3D Shape Estimation from 2D Landmarks
M.W.J. Paskin
D. Baum
M. Dean
C. V. Tycowicz
17
3
0
26 Jul 2022
Black-Box Test-Time Shape REFINEment for Single View 3D Reconstruction
Black-Box Test-Time Shape REFINEment for Single View 3D Reconstruction
Brandon Leung
Chih-Hui Ho
Nuno Vasconcelos
15
5
0
23 Aug 2021
Frustratingly Simple Few-Shot Object Detection
Frustratingly Simple Few-Shot Object Detection
Xin Wang
Thomas E. Huang
Trevor Darrell
Joseph E. Gonzalez
F. I. F. Richard Yu
ObjD
75
543
0
16 Mar 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
252
11,677
0
09 Mar 2017
Learning a Probabilistic Latent Space of Object Shapes via 3D
  Generative-Adversarial Modeling
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Jiajun Wu
Chengkai Zhang
Tianfan Xue
Bill Freeman
J. Tenenbaum
GAN
164
1,940
0
24 Oct 2016
1