ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.08532
  4. Cited By
DGL-KE: Training Knowledge Graph Embeddings at Scale

DGL-KE: Training Knowledge Graph Embeddings at Scale

18 April 2020
Da Zheng
Xiang Song
Chao Ma
Zeyuan Tan
Zihao Ye
Jin Dong
Hao Xiong
Zheng Zhang
George Karypis
ArXivPDFHTML

Papers citing "DGL-KE: Training Knowledge Graph Embeddings at Scale"

11 / 11 papers shown
Title
A Semantic Partitioning Method for Large-Scale Training of Knowledge Graph Embeddings
A Semantic Partitioning Method for Large-Scale Training of Knowledge Graph Embeddings
Yuhe Bai
56
1
0
08 Jan 2025
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph
  Neural Networks
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks
Minjie Wang
Da Zheng
Zihao Ye
Quan Gan
Mufei Li
...
Jiaqi Zhao
Haotong Zhang
Alex Smola
Jinyang Li
Zheng Zhang
AI4CE
GNN
247
748
0
03 Sep 2019
PyTorch-BigGraph: A Large-scale Graph Embedding System
PyTorch-BigGraph: A Large-scale Graph Embedding System
Adam Lerer
Ledell Yu Wu
Jiajun Shen
Timothée Lacroix
Luca Wehrstedt
Abhijit Bose
A. Peysakhovich
GNN
45
384
0
28 Mar 2019
GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding
GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding
Zhaocheng Zhu
Shizhen Xu
Meng Qu
Jian Tang
GNN
93
113
0
02 Mar 2019
RotatE: Knowledge Graph Embedding by Relational Rotation in Complex
  Space
RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space
Zhiqing Sun
Zhihong Deng
Jian-Yun Nie
Jian Tang
80
2,108
0
26 Feb 2019
Analysis of the Impact of Negative Sampling on Link Prediction in
  Knowledge Graphs
Analysis of the Impact of Negative Sampling on Link Prediction in Knowledge Graphs
Bhushan Kotnis
Vivi Nastase
42
81
0
22 Aug 2017
Graph Embedding Techniques, Applications, and Performance: A Survey
Graph Embedding Techniques, Applications, and Performance: A Survey
Palash Goyal
Emilio Ferrara
GNN
AI4TS
89
1,724
0
08 May 2017
Complex Embeddings for Simple Link Prediction
Complex Embeddings for Simple Link Prediction
Théo Trouillon
Johannes Welbl
Sebastian Riedel
Éric Gaussier
Guillaume Bouchard
BDL
81
2,955
0
20 Jun 2016
MXNet: A Flexible and Efficient Machine Learning Library for
  Heterogeneous Distributed Systems
MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems
Tianqi Chen
Mu Li
Yutian Li
Min Lin
Naiyan Wang
Minjie Wang
Tianjun Xiao
Bing Xu
Chiyuan Zhang
Zheng Zhang
125
2,243
0
03 Dec 2015
Embedding Entities and Relations for Learning and Inference in Knowledge
  Bases
Embedding Entities and Relations for Learning and Inference in Knowledge Bases
Bishan Yang
Wen-tau Yih
Xiaodong He
Jianfeng Gao
Li Deng
NAI
77
3,174
0
20 Dec 2014
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient
  Descent
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
Feng Niu
Benjamin Recht
Christopher Ré
Stephen J. Wright
142
2,272
0
28 Jun 2011
1