Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.10337
Cited By
v1
v2
v3
v4 (latest)
Machine learning for causal inference: on the use of cross-fit estimators
21 April 2020
P. Zivich
A. Breskin
CML
OOD
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Machine learning for causal inference: on the use of cross-fit estimators"
9 / 9 papers shown
Title
Generalized coarsened confounding for causal effects: a large-sample framework
Debashis Ghosh
Lei Wang
CML
57
0
0
06 Jan 2025
Performance of Cross-Validated Targeted Maximum Likelihood Estimation
Matthew J. Smith
Rachael V. Phillips
C. Maringe
Miguel Angel Luque-Fernandez
49
1
0
17 Sep 2024
Graph Machine Learning based Doubly Robust Estimator for Network Causal Effects
Seyedeh Baharan Khatami
Harsh Parikh
Haowei Chen
Sudeepa Roy
Babak Salimi
OOD
78
1
0
17 Mar 2024
Efficient adjustment for complex covariates: Gaining efficiency with DOPE
Alexander Mangulad Christgau
Niels Richard Hansen
93
3
0
20 Feb 2024
CausalMetaR: An R package for performing causally interpretable meta-analyses
Guanbo Wang
Sean McGrath
Yi Lian
CML
94
1
0
06 Feb 2024
Application of targeted maximum likelihood estimation in public health and epidemiological studies: a systematic review
Matthew J. Smith
Rachael V. Phillips
M. Luque-Fernández
C. Maringe
OOD
56
22
0
13 Mar 2023
Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance
Gabriel Okasa
CML
55
6
0
30 Jan 2022
Causal Bias Quantification for Continuous Treatments
Gianluca Detommaso
Michael Bruckner
Philip Schulz
Victor Chernozhukov
CML
91
0
0
17 Jun 2021
Tutorial: Introduction to computational causal inference using reproducible Stata, R and Python code
Matthew J. Smith
C. Maringe
B. Rachet
M. Mansournia
P. Zivich
Stephen R. Cole
M. Luque-Fernández
CML
17
2
0
17 Dec 2020
1