Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.14497
Cited By
Towards optimal doubly robust estimation of heterogeneous causal effects
29 April 2020
Edward H. Kennedy
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards optimal doubly robust estimation of heterogeneous causal effects"
50 / 158 papers shown
Title
Conformal Counterfactual Inference under Hidden Confounding
Zonghao Chen
Ruocheng Guo
Jean-François Ton
Yang Liu
CML
OffRL
53
2
0
20 May 2024
Predictive Performance Comparison of Decision Policies Under Confounding
Luke M. Guerdan
Amanda Coston
Kenneth Holstein
Zhiwei Steven Wu
OffRL
34
0
0
01 Apr 2024
Efficient and Sharp Off-Policy Evaluation in Robust Markov Decision Processes
Andrew Bennett
Nathan Kallus
M. Oprescu
Wen Sun
Kaiwen Wang
AAML
OffRL
55
1
0
29 Mar 2024
Uplift Modeling Under Limited Supervision
G. Panagopoulos
Daniele Malitesta
Fragkiskos D. Malliaros
Jun Pang
CML
46
0
0
28 Mar 2024
Limits of Approximating the Median Treatment Effect
Raghavendra Addanki
Siddharth Bhandari
30
0
0
15 Mar 2024
Unveiling the Potential of Robustness in Evaluating Causal Inference Models
Yiyan Huang
Cheuk Hang Leung
Siyi Wang
Yijun Li
Qi Wu
OOD
CML
39
0
0
28 Feb 2024
Federated Learning for Estimating Heterogeneous Treatment Effects
Disha Makhija
Joydeep Ghosh
Yejin Kim
CML
FedML
43
2
0
27 Feb 2024
Evaluating the Effectiveness of Index-Based Treatment Allocation
Niclas Boehmer
Yash Nair
Sanket Shah
Lucas Janson
Aparna Taneja
Milind Tambe
39
3
0
19 Feb 2024
Conformal Convolution and Monte Carlo Meta-learners for Predictive Inference of Individual Treatment Effects
Jef Jonkers
Jarne Verhaeghe
Glenn Van Wallendael
Luc Duchateau
Sofie Van Hoecke
31
2
0
07 Feb 2024
Continuous Treatment Effects with Surrogate Outcomes
Zhenghao Zeng
David Arbour
Avi Feller
Raghavendra Addanki
Ryan Rossi
Ritwik Sinha
Edward H. Kennedy
CML
15
3
0
31 Jan 2024
Is Knowledge All Large Language Models Needed for Causal Reasoning?
Hengrui Cai
Shengjie Liu
Rui Song
LRM
ELM
28
10
0
30 Dec 2023
RoME: A Robust Mixed-Effects Bandit Algorithm for Optimizing Mobile Health Interventions
Easton K. Huch
Jieru Shi
Madeline R Abbott
J. Golbus
Alexander Moreno
Walter Dempsey
OffRL
24
0
0
11 Dec 2023
A Neural Framework for Generalized Causal Sensitivity Analysis
Dennis Frauen
F. Imrie
Alicia Curth
Valentyn Melnychuk
Stefan Feuerriegel
M. Schaar
CML
36
10
0
27 Nov 2023
Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
CML
34
9
0
19 Nov 2023
Model Agnostic Explainable Selective Regression via Uncertainty Estimation
Andrea Pugnana
Carlos Mougan
Dan Saattrup Nielsen
49
0
0
15 Nov 2023
CATE Lasso: Conditional Average Treatment Effect Estimation with High-Dimensional Linear Regression
Masahiro Kato
Masaaki Imaizumi
CML
22
2
0
25 Oct 2023
Causal Q-Aggregation for CATE Model Selection
Hui Lan
Vasilis Syrgkanis
CML
50
4
0
25 Oct 2023
Counterfactual Prediction Under Selective Confounding
Sohaib Kiani
Jared Barton
Jon Sushinsky
Lynda Heimbach
Bo Luo
CML
37
1
0
21 Oct 2023
Transparency challenges in policy evaluation with causal machine learning -- improving usability and accountability
Patrick Rehill
Nicholas Biddle
CML
ELM
42
3
0
20 Oct 2023
Causal Effect Estimation after Propensity Score Trimming with Continuous Treatments
Zach Branson
Edward H. Kennedy
Sivaraman Balakrishnan
Larry Wasserman
CML
35
4
0
01 Sep 2023
Conformal Meta-learners for Predictive Inference of Individual Treatment Effects
Ahmed Alaa
Zaid Ahmad
Mark van der Laan
CML
35
16
0
28 Aug 2023
Optimally weighted average derivative effects
Oliver Hines
Karla Diaz-Ordaz
S. Vansteelandt
CML
34
2
0
10 Aug 2023
Pareto Invariant Representation Learning for Multimedia Recommendation
Shanshan Huang
Haoxuan Li
Qingsong Li
Chunyuan Zheng
Li Liu
CML
27
11
0
09 Aug 2023
Variable importance for causal forests: breaking down the heterogeneity of treatment effects
Clément Bénard
Julie Josse
CML
39
5
0
07 Aug 2023
Forster-Warmuth Counterfactual Regression: A Unified Learning Approach
Yachong Yang
Arun K. Kuchibhotla
E. T. Tchetgen
26
3
0
31 Jul 2023
The Connection Between R-Learning and Inverse-Variance Weighting for Estimation of Heterogeneous Treatment Effects
Aaron Fisher
CML
24
1
0
19 Jul 2023
Mitigating Adversarial Vulnerability through Causal Parameter Estimation by Adversarial Double Machine Learning
Byung-Kwan Lee
Junho Kim
Yonghyun Ro
AAML
33
9
0
14 Jul 2023
Efficient and Multiply Robust Risk Estimation under General Forms of Dataset Shift
Hongxiang Qiu
E. T. Tchetgen
Yan Sun
OOD
17
7
0
28 Jun 2023
A Meta-Learning Method for Estimation of Causal Excursion Effects to Assess Time-Varying Moderation
Jieru Shi
Walter Dempsey
CML
23
4
0
28 Jun 2023
Incremental Profit per Conversion: a Response Transformation for Uplift Modeling in E-Commerce Promotions
Hugo Manuel Proença
Felipe Moraes
24
1
0
23 Jun 2023
Treatment Effects in Extreme Regimes
Ahmed Aloui
Ali Hasan
Yuting Ng
Miroslav Pajic
Vahid Tarokh
11
0
0
20 Jun 2023
Assumption-lean falsification tests of rate double-robustness of double-machine-learning estimators
Lin Liu
Rajarshi Mukherjee
J. M. Robins
26
1
0
18 Jun 2023
Three-way Cross-Fitting and Pseudo-Outcome Regression for Estimation of Conditional Effects and other Linear Functionals
Aaron Fisher
Virginia Fisher
24
3
0
12 Jun 2023
Fair and Robust Estimation of Heterogeneous Treatment Effects for Policy Learning
K. Kim
J. Zubizarreta
36
7
0
06 Jun 2023
Sharp Bounds for Generalized Causal Sensitivity Analysis
Dennis Frauen
Valentyn Melnychuk
Stefan Feuerriegel
CML
41
18
0
26 May 2023
Dynamic Inter-treatment Information Sharing for Individualized Treatment Effects Estimation
V. Chauhan
Jiandong Zhou
Ghadeer O. Ghosheh
Soheila Molaei
David Clifton
30
8
0
25 May 2023
Meta-learning for heterogeneous treatment effect estimation with closed-form solvers
Tomoharu Iwata
Yoichi Chikahara
CML
FedML
36
0
0
19 May 2023
B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under Hidden Confounding
M. Oprescu
Jacob Dorn
Marah Ghoummaid
Andrew Jesson
Nathan Kallus
Uri Shalit
CML
FedML
32
25
0
20 Apr 2023
Comparison of Methods that Combine Multiple Randomized Trials to Estimate Heterogeneous Treatment Effects
Carly L Brantner
Trang Quynh Nguyen
Tengjie Tang
Congwen Zhao
H. Hong
E. Stuart
27
3
0
28 Mar 2023
Semi-parametric inference based on adaptively collected data
Licong Lin
K. Khamaru
Martin J. Wainwright
OffRL
39
6
0
05 Mar 2023
Causal isotonic calibration for heterogeneous treatment effects
L. Laan
Ernesto Ulloa-Pérez
M. Carone
Alexander Luedtke
31
11
0
27 Feb 2023
Understanding the Impact of Competing Events on Heterogeneous Treatment Effect Estimation from Time-to-Event Data
Alicia Curth
M. Schaar
CML
34
3
0
23 Feb 2023
New
n
\sqrt{n}
n
-consistent, numerically stable higher-order influence function estimators
Lin Liu
Chang Li
21
0
0
16 Feb 2023
In Search of Insights, Not Magic Bullets: Towards Demystification of the Model Selection Dilemma in Heterogeneous Treatment Effect Estimation
Alicia Curth
M. Schaar
CML
15
25
0
06 Feb 2023
Robust Fitted-Q-Evaluation and Iteration under Sequentially Exogenous Unobserved Confounders
David Bruns-Smith
Angela Zhou
OffRL
18
9
0
01 Feb 2023
How to select predictive models for causal inference?
M. Doutreligne
Gaël Varoquaux
ELM
CML
29
2
0
01 Feb 2023
Zero-shot causal learning
H. Nilforoshan
Michael Moor
Yusuf Roohani
Yining Chen
Anja vSurina
Michihiro Yasunaga
Sara Oblak
J. Leskovec
CML
BDL
OffRL
24
11
0
28 Jan 2023
Proximal Causal Learning of Conditional Average Treatment Effects
Erik Sverdrup
Yifan Cui
CML
30
4
0
26 Jan 2023
Data-Driven Estimation of Heterogeneous Treatment Effects
Christopher Tran
Keith Burghardt
Kristina Lerman
Elena Zheleva
CML
32
1
0
16 Jan 2023
Doubly Robust Counterfactual Classification
K. Kim
Edward H. Kennedy
J. Zubizarreta
OffRL
33
5
0
15 Jan 2023
Previous
1
2
3
4
Next