Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.14756
Cited By
Robustness Certification of Generative Models
30 April 2020
M. Mirman
Timon Gehr
Martin Vechev
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robustness Certification of Generative Models"
8 / 8 papers shown
Title
Verification of Neural Networks against Convolutional Perturbations via Parameterised Kernels
Benedikt Brückner
Alessio Lomuscio
AAML
52
0
0
07 Nov 2024
Learning from Uncertain Data: From Possible Worlds to Possible Models
Jiongli Zhu
Su Feng
Boris Glavic
Babak Salimi
27
0
0
28 May 2024
Mathematical Algorithm Design for Deep Learning under Societal and Judicial Constraints: The Algorithmic Transparency Requirement
Holger Boche
Adalbert Fono
Gitta Kutyniok
FaML
25
4
0
18 Jan 2024
Verifying Attention Robustness of Deep Neural Networks against Semantic Perturbations
S. Munakata
Caterina Urban
Haruki Yokoyama
Koji Yamamoto
Kazuki Munakata
AAML
15
4
0
13 Jul 2022
Latent Space Smoothing for Individually Fair Representations
Momchil Peychev
Anian Ruoss
Mislav Balunović
Maximilian Baader
Martin Vechev
FaML
36
18
0
26 Nov 2021
Make Sure You're Unsure: A Framework for Verifying Probabilistic Specifications
Leonard Berrada
Sumanth Dathathri
Krishnamurthy Dvijotham
Robert Stanforth
Rudy Bunel
J. Uesato
Sven Gowal
M. P. Kumar
AAML
OOD
30
17
0
18 Feb 2021
Scaling Polyhedral Neural Network Verification on GPUs
Christoph Müller
F. Serre
Gagandeep Singh
Markus Püschel
Martin Vechev
AAML
15
56
0
20 Jul 2020
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
226
1,835
0
03 Feb 2017
1