Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.14841
Cited By
v1
v2
v3
v4 (latest)
Interpretable Random Forests via Rule Extraction
29 April 2020
Clément Bénard
Gérard Biau
Sébastien Da Veiga
Erwan Scornet
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Interpretable Random Forests via Rule Extraction"
11 / 11 papers shown
Title
Explaining Predictions by Characteristic Rules
Amr Alkhatib
Henrik Bostrom
Michalis Vazirgiannis
76
5
0
31 May 2024
Local and Regional Counterfactual Rules: Summarized and Robust Recourses
Salim I. Amoukou
Nicolas Brunel
47
0
0
29 Sep 2022
Explainable Global Fairness Verification of Tree-Based Classifiers
Stefano Calzavara
Lorenzo Cazzaro
Claudio Lucchese
Federico Marcuzzi
79
3
0
27 Sep 2022
Explaining Any ML Model? -- On Goals and Capabilities of XAI
Moritz Renftle
Holger Trittenbach
M. Poznic
Reinhard Heil
ELM
63
6
0
28 Jun 2022
Consistent Sufficient Explanations and Minimal Local Rules for explaining regression and classification models
Salim I. Amoukou
Nicolas Brunel
FAtt
LRM
84
5
0
08 Nov 2021
Trading Complexity for Sparsity in Random Forest Explanations
Gilles Audemard
S. Bellart
Louenas Bounia
F. Koriche
Jean-Marie Lagniez
Pierre Marquis
61
40
0
11 Aug 2021
Accurate Shapley Values for explaining tree-based models
Salim I. Amoukou
Nicolas Brunel
Tangi Salaun
TDI
FAtt
64
15
0
07 Jun 2021
Making CNNs Interpretable by Building Dynamic Sequential Decision Forests with Top-down Hierarchy Learning
Yilin Wang
Shaozuo Yu
Xiaokang Yang
Wei Shen
38
1
0
05 Jun 2021
Robust Model Compression Using Deep Hypotheses
Omri Armstrong
Ran Gilad-Bachrach
OOD
26
2
0
13 Mar 2021
Towards interpreting ML-based automated malware detection models: a survey
Yuzhou Lin
Xiaolin Chang
124
7
0
15 Jan 2021
Consistent Regression using Data-Dependent Coverings
Vincent Margot
Jean-Patrick Baudry
Frédéric Guilloux
Olivier Wintenberger
52
5
0
04 Jul 2019
1