ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.14841
  4. Cited By
Interpretable Random Forests via Rule Extraction
v1v2v3v4 (latest)

Interpretable Random Forests via Rule Extraction

29 April 2020
Clément Bénard
Gérard Biau
Sébastien Da Veiga
Erwan Scornet
ArXiv (abs)PDFHTML

Papers citing "Interpretable Random Forests via Rule Extraction"

11 / 11 papers shown
Title
Explaining Predictions by Characteristic Rules
Explaining Predictions by Characteristic Rules
Amr Alkhatib
Henrik Bostrom
Michalis Vazirgiannis
76
5
0
31 May 2024
Local and Regional Counterfactual Rules: Summarized and Robust Recourses
Local and Regional Counterfactual Rules: Summarized and Robust Recourses
Salim I. Amoukou
Nicolas Brunel
47
0
0
29 Sep 2022
Explainable Global Fairness Verification of Tree-Based Classifiers
Explainable Global Fairness Verification of Tree-Based Classifiers
Stefano Calzavara
Lorenzo Cazzaro
Claudio Lucchese
Federico Marcuzzi
79
3
0
27 Sep 2022
Explaining Any ML Model? -- On Goals and Capabilities of XAI
Explaining Any ML Model? -- On Goals and Capabilities of XAI
Moritz Renftle
Holger Trittenbach
M. Poznic
Reinhard Heil
ELM
63
6
0
28 Jun 2022
Consistent Sufficient Explanations and Minimal Local Rules for
  explaining regression and classification models
Consistent Sufficient Explanations and Minimal Local Rules for explaining regression and classification models
Salim I. Amoukou
Nicolas Brunel
FAttLRM
84
5
0
08 Nov 2021
Trading Complexity for Sparsity in Random Forest Explanations
Trading Complexity for Sparsity in Random Forest Explanations
Gilles Audemard
S. Bellart
Louenas Bounia
F. Koriche
Jean-Marie Lagniez
Pierre Marquis
61
40
0
11 Aug 2021
Accurate Shapley Values for explaining tree-based models
Accurate Shapley Values for explaining tree-based models
Salim I. Amoukou
Nicolas Brunel
Tangi Salaun
TDIFAtt
67
15
0
07 Jun 2021
Making CNNs Interpretable by Building Dynamic Sequential Decision
  Forests with Top-down Hierarchy Learning
Making CNNs Interpretable by Building Dynamic Sequential Decision Forests with Top-down Hierarchy Learning
Yilin Wang
Shaozuo Yu
Xiaokang Yang
Wei Shen
38
1
0
05 Jun 2021
Robust Model Compression Using Deep Hypotheses
Robust Model Compression Using Deep Hypotheses
Omri Armstrong
Ran Gilad-Bachrach
OOD
26
2
0
13 Mar 2021
Towards interpreting ML-based automated malware detection models: a
  survey
Towards interpreting ML-based automated malware detection models: a survey
Yuzhou Lin
Xiaolin Chang
124
7
0
15 Jan 2021
Consistent Regression using Data-Dependent Coverings
Consistent Regression using Data-Dependent Coverings
Vincent Margot
Jean-Patrick Baudry
Frédéric Guilloux
Olivier Wintenberger
52
5
0
04 Jul 2019
1