Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.00178
Cited By
On the Benefits of Invariance in Neural Networks
1 May 2020
Clare Lyle
Mark van der Wilk
Marta Z. Kwiatkowska
Y. Gal
Benjamin Bloem-Reddy
OOD
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Benefits of Invariance in Neural Networks"
24 / 24 papers shown
Title
Lie Group Symmetry Discovery and Enforcement Using Vector Fields
Ben Shaw
Sasidhar Kunapuli
A. Magner
Kevin R. Moon
27
0
0
13 May 2025
Data Augmentation and Regularization for Learning Group Equivariance
Oskar Nordenfors
Axel Flinth
57
0
0
10 Feb 2025
Relaxed Equivariance via Multitask Learning
Ahmed A. A. Elhag
T. Konstantin Rusch
Francesco Di Giovanni
Michael Bronstein
50
2
0
23 Oct 2024
Revisiting Random Walks for Learning on Graphs
Jinwoo Kim
Olga Zaghen
Ayhan Suleymanzade
Youngmin Ryou
Seunghoon Hong
59
0
0
01 Jul 2024
Symmetries in Overparametrized Neural Networks: A Mean-Field View
Javier Maass Martínez
Joaquin Fontbona
FedML
MLT
50
2
0
30 May 2024
Approximate Nullspace Augmented Finetuning for Robust Vision Transformers
Haoyang Liu
Aditya Singh
Yijiang Li
Haohan Wang
AAML
ViT
36
1
0
15 Mar 2024
Approximation-Generalization Trade-offs under (Approximate) Group Equivariance
Mircea Petrache
Shubhendu Trivedi
35
22
0
27 May 2023
Optimization Dynamics of Equivariant and Augmented Neural Networks
Axel Flinth
F. Ohlsson
41
5
0
23 Mar 2023
Steerable Equivariant Representation Learning
Sangnie Bhardwaj
Willie McClinton
Tongzhou Wang
Guillaume Lajoie
Chen Sun
Phillip Isola
Dilip Krishnan
OOD
LLMSV
31
5
0
22 Feb 2023
PAC-Bayes Compression Bounds So Tight That They Can Explain Generalization
Sanae Lotfi
Marc Finzi
Sanyam Kapoor
Andres Potapczynski
Micah Goldblum
A. Wilson
BDL
MLT
AI4CE
29
51
0
24 Nov 2022
A PAC-Bayesian Generalization Bound for Equivariant Networks
Arash Behboodi
Gabriele Cesa
Taco S. Cohen
53
17
0
24 Oct 2022
Streaming PAC-Bayes Gaussian process regression with a performance guarantee for online decision making
Tianyu Liu
Jie Lu
Zheng Yan
Guangquan Zhang
36
0
0
16 Oct 2022
In What Ways Are Deep Neural Networks Invariant and How Should We Measure This?
Henry Kvinge
Tegan H. Emerson
Grayson Jorgenson
Scott Vasquez
T. Doster
Jesse D. Lew
43
8
0
07 Oct 2022
Augmentation Backdoors
J. Rance
Yiren Zhao
Ilia Shumailov
Robert D. Mullins
AAML
SILM
53
7
0
29 Sep 2022
Automatic Data Augmentation via Invariance-Constrained Learning
Ignacio Hounie
Luiz F. O. Chamon
Alejandro Ribeiro
23
10
0
29 Sep 2022
On the Limitations of Stochastic Pre-processing Defenses
Yue Gao
Ilia Shumailov
Kassem Fawaz
Nicolas Papernot
AAML
SILM
36
30
0
19 Jun 2022
Testing for Geometric Invariance and Equivariance
Louis Christie
J. Aston
25
2
0
30 May 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
52
56
0
23 Feb 2022
Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?
M. Farrell
Blake Bordelon
Shubhendu Trivedi
C. Pehlevan
18
5
0
14 Oct 2021
Implicit Bias of Linear Equivariant Networks
Hannah Lawrence
Kristian Georgiev
A. Dienes
B. Kiani
AI4CE
37
14
0
12 Oct 2021
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
130
78
0
01 Oct 2021
Data augmentation in Bayesian neural networks and the cold posterior effect
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
BDL
21
37
0
10 Jun 2021
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
165
308
0
05 Nov 2018
Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning
O. Catoni
148
454
0
03 Dec 2007
1