Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.00687
Cited By
Open Graph Benchmark: Datasets for Machine Learning on Graphs
2 May 2020
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Open Graph Benchmark: Datasets for Machine Learning on Graphs"
42 / 92 papers shown
Title
Revisiting Random Walks for Learning on Graphs
Jinwoo Kim
Olga Zaghen
Ayhan Suleymanzade
Youngmin Ryou
Seunghoon Hong
38
0
0
01 Jul 2024
KAGNNs: Kolmogorov-Arnold Networks meet Graph Learning
Roman Bresson
Giannis Nikolentzos
G. Panagopoulos
Michail Chatzianastasis
Jun Pang
Michalis Vazirgiannis
46
42
0
26 Jun 2024
Unifying Unsupervised Graph-Level Anomaly Detection and Out-of-Distribution Detection: A Benchmark
Yili Wang
Yixin Liu
Xu Shen
Chenyu Li
Kaize Ding
Rui Miao
Ying Wang
Shirui Pan
Xin Wang
16
6
0
21 Jun 2024
Reproducibility in Machine Learning-based Research: Overview, Barriers and Drivers
Harald Semmelrock
Tony Ross-Hellauer
Simone Kopeinik
Dieter Theiler
Armin Haberl
Stefan Thalmann
Dominik Kowald
37
5
0
20 Jun 2024
RobGC: Towards Robust Graph Condensation
Xinyi Gao
Hongzhi Yin
Tong Chen
Guanhua Ye
Wentao Zhang
Bin Cui
AAML
43
3
0
19 Jun 2024
GENIE: Watermarking Graph Neural Networks for Link Prediction
Venkata Sai Pranav Bachina
Ankit Gangwal
Aaryan Ajay Sharma
Charu Sharma
30
1
0
07 Jun 2024
Rethinking and Accelerating Graph Condensation: A Training-Free Approach with Class Partition
Xin Gao
Tong Chen
Wentao Zhang
Junliang Yu
Guanhua Ye
Quoc Viet Hung Nguyen
21
6
0
22 May 2024
I/O in Machine Learning Applications on HPC Systems: A 360-degree Survey
Noah Lewis
J. L. Bez
Suren Byna
35
0
0
16 Apr 2024
Contextualized Messages Boost Graph Representations
Brian Godwin Lim
Galvin Brice Lim
Renzo Roel Tan
Kazushi Ikeda
AI4CE
31
1
0
19 Mar 2024
Through the Dual-Prism: A Spectral Perspective on Graph Data Augmentation for Graph Classification
Yutong Xia
Runpeng Yu
Yuxuan Liang
Xavier Bresson
Xinchao Wang
Roger Zimmermann
25
4
0
18 Jan 2024
Disentangled Condensation for Large-scale Graphs
Zhenbang Xiao
Shunyu Liu
Yu Wang
Tongya Zheng
Mingli Song
Mingli Song
Tongya Zheng
DD
64
6
0
18 Jan 2024
Critical Influence of Overparameterization on Sharpness-aware Minimization
Sungbin Shin
Dongyeop Lee
Maksym Andriushchenko
Namhoon Lee
AAML
21
1
0
29 Nov 2023
Supercharging Graph Transformers with Advective Diffusion
Qitian Wu
Chenxiao Yang
Kaipeng Zeng
Fan Nie
AI4CE
28
6
0
10 Oct 2023
TouchUp-G: Improving Feature Representation through Graph-Centric Finetuning
Jing Zhu
Xiang Song
V. Ioannidis
Danai Koutra
Christos Faloutsos
24
13
0
25 Sep 2023
A Group Symmetric Stochastic Differential Equation Model for Molecule Multi-modal Pretraining
Shengchao Liu
Weitao Du
Zhiming Ma
Hongyu Guo
Jian Tang
14
29
0
28 May 2023
GFairHint: Improving Individual Fairness for Graph Neural Networks via Fairness Hint
Paiheng Xu
Yuhang Zhou
Bang An
Wei Ai
Furong Huang
12
6
0
25 May 2023
Similarity of Neural Network Models: A Survey of Functional and Representational Measures
Max Klabunde
Tobias Schumacher
M. Strohmaier
Florian Lemmerich
43
63
0
10 May 2023
Convergence of Message Passing Graph Neural Networks with Generic Aggregation On Large Random Graphs
Matthieu Cordonnier
Nicolas Keriven
Nicolas M Tremblay
Samuel Vaiter
GNN
35
7
0
21 Apr 2023
Transductive Linear Probing: A Novel Framework for Few-Shot Node Classification
Zhen Tan
Song Wang
Kaize Ding
Jundong Li
Huan Liu
16
25
0
11 Dec 2022
A Gaze into the Internal Logic of Graph Neural Networks, with Logic
Paul Tarau
NAI
6
2
0
05 Aug 2022
Unified 2D and 3D Pre-Training of Molecular Representations
Jinhua Zhu
Yingce Xia
Lijun Wu
Shufang Xie
Tao Qin
Wen-gang Zhou
Houqiang Li
Tie-Yan Liu
AI4CE
38
67
0
14 Jul 2022
Condensing Graphs via One-Step Gradient Matching
Wei Jin
Xianfeng Tang
Haoming Jiang
Zheng Li
Danqing Zhang
Jiliang Tang
Bin Ying
DD
11
98
0
15 Jun 2022
Multi-block Min-max Bilevel Optimization with Applications in Multi-task Deep AUC Maximization
Quanqi Hu
Yongjian Zhong
Tianbao Yang
17
16
0
01 Jun 2022
OOD Link Prediction Generalization Capabilities of Message-Passing GNNs in Larger Test Graphs
Yangze Zhou
Gitta Kutyniok
Bruno Ribeiro
OODD
AI4CE
62
37
0
30 May 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
34
98
0
16 May 2022
Representing Long-Range Context for Graph Neural Networks with Global Attention
Zhanghao Wu
Paras Jain
Matthew A. Wright
Azalia Mirhoseini
Joseph E. Gonzalez
Ion Stoica
GNN
16
258
0
21 Jan 2022
GCoD: Graph Convolutional Network Acceleration via Dedicated Algorithm and Accelerator Co-Design
Sung Une Lee
Boming Xia
Yongan Zhang
Ang Li
Yingyan Lin
GNN
34
45
0
22 Dec 2021
BGL: GPU-Efficient GNN Training by Optimizing Graph Data I/O and Preprocessing
Tianfeng Liu
Yangrui Chen
Dan Li
Chuan Wu
Yibo Zhu
Jun He
Yanghua Peng
Hongzheng Chen
Hongzhi Chen
Chuanxiong Guo
GNN
18
69
0
16 Dec 2021
Serpens: A High Bandwidth Memory Based Accelerator for General-Purpose Sparse Matrix-Vector Multiplication
Linghao Song
Yuze Chi
Licheng Guo
Jason Cong
9
40
0
24 Nov 2021
Graph Transplant: Node Saliency-Guided Graph Mixup with Local Structure Preservation
Joonhyung Park
Hajin Shim
Eunho Yang
77
48
0
10 Nov 2021
Graph Robustness Benchmark: Benchmarking the Adversarial Robustness of Graph Machine Learning
Qinkai Zheng
Xu Zou
Yuxiao Dong
Yukuo Cen
Da Yin
Jiarong Xu
Yang Yang
Jie Tang
OOD
AAML
22
49
0
08 Nov 2021
Accelerating Training and Inference of Graph Neural Networks with Fast Sampling and Pipelining
Tim Kaler
Nickolas Stathas
Anne Ouyang
A. Iliopoulos
Tao B. Schardl
C. E. Leiserson
Jie Chen
GNN
56
51
0
16 Oct 2021
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
117
78
0
01 Oct 2021
Size-Invariant Graph Representations for Graph Classification Extrapolations
Beatrice Bevilacqua
Yangze Zhou
Bruno Ribeiro
OOD
25
104
0
08 Mar 2021
Anomaly Detection on Attributed Networks via Contrastive Self-Supervised Learning
Yixin Liu
Zhao Li
Shirui Pan
Chen Gong
Chuan Zhou
George Karypis
7
277
0
27 Feb 2021
Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development
Kexin Huang
Tianfan Fu
Wenhao Gao
Yue Zhao
Yusuf Roohani
J. Leskovec
Connor W. Coley
Cao Xiao
Jimeng Sun
Marinka Zitnik
OOD
LM&MA
8
258
0
18 Feb 2021
Heterogeneous Graph Transformer
Ziniu Hu
Yuxiao Dong
Kuansan Wang
Yizhou Sun
167
1,157
0
03 Mar 2020
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks
Minjie Wang
Da Zheng
Zihao Ye
Quan Gan
Mufei Li
...
J. Zhao
Haotong Zhang
Alex Smola
Jinyang Li
Zheng-Wei Zhang
AI4CE
GNN
177
665
0
03 Sep 2019
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
217
1,726
0
09 Jun 2018
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
294
6,003
0
20 Apr 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
152
1,748
0
02 Mar 2017
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
228
3,202
0
24 Nov 2016
Previous
1
2