ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.01856
  4. Cited By
Selecting Data Augmentation for Simulating Interventions
v1v2v3v4 (latest)

Selecting Data Augmentation for Simulating Interventions

4 May 2020
Maximilian Ilse
Jakub M. Tomczak
Patrick Forré
    OODCML
ArXiv (abs)PDFHTML

Papers citing "Selecting Data Augmentation for Simulating Interventions"

9 / 9 papers shown
Title
Predicting is not Understanding: Recognizing and Addressing
  Underspecification in Machine Learning
Predicting is not Understanding: Recognizing and Addressing Underspecification in Machine Learning
Damien Teney
Maxime Peyrard
Ehsan Abbasnejad
115
29
0
06 Jul 2022
Self-Supervised Learning with Data Augmentations Provably Isolates
  Content from Style
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style
Julius von Kügelgen
Yash Sharma
Luigi Gresele
Wieland Brendel
Bernhard Schölkopf
M. Besserve
Francesco Locatello
133
317
0
08 Jun 2021
Out-of-distribution Prediction with Invariant Risk Minimization: The
  Limitation and An Effective Fix
Out-of-distribution Prediction with Invariant Risk Minimization: The Limitation and An Effective Fix
Ruocheng Guo
Pengchuan Zhang
Hao Liu
Emre Kıcıman
OOD
80
37
0
16 Jan 2021
Counterfactual Generative Networks
Counterfactual Generative Networks
Axel Sauer
Andreas Geiger
OODBDLCML
102
127
0
15 Jan 2021
Generative Interventions for Causal Learning
Generative Interventions for Causal Learning
Chengzhi Mao
Augustine Cha
Amogh Gupta
Hongya Wang
Junfeng Yang
Carl Vondrick
CMLOOD
86
66
0
22 Dec 2020
Latent Causal Invariant Model
Latent Causal Invariant Model
Xinwei Sun
Botong Wu
Xiangyu Zheng
Chang-Shu Liu
Wei Chen
Tao Qin
Tie-Yan Liu
OODCMLBDL
93
14
0
04 Nov 2020
Learning Causal Semantic Representation for Out-of-Distribution
  Prediction
Learning Causal Semantic Representation for Out-of-Distribution Prediction
Chang-Shu Liu
Xinwei Sun
Jindong Wang
Haoyue Tang
Tao Li
Tao Qin
Wei Chen
Tie-Yan Liu
CMLOODDOOD
153
106
0
03 Nov 2020
Automatic Data Augmentation for Generalization in Deep Reinforcement
  Learning
Automatic Data Augmentation for Generalization in Deep Reinforcement Learning
Roberta Raileanu
M. Goldstein
Denis Yarats
Ilya Kostrikov
Rob Fergus
OffRL
63
110
0
23 Jun 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
344
945
0
02 Mar 2020
1