ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.02357
  4. Cited By
Sub-Image Anomaly Detection with Deep Pyramid Correspondences

Sub-Image Anomaly Detection with Deep Pyramid Correspondences

5 May 2020
Niv Cohen
Yedid Hoshen
ArXivPDFHTML

Papers citing "Sub-Image Anomaly Detection with Deep Pyramid Correspondences"

14 / 64 papers shown
Title
KRNet: Towards Efficient Knowledge Replay
KRNet: Towards Efficient Knowledge Replay
Yingying Zhang
Qiaoyong Zhong
Di Xie
Shi Pu
CLL
20
0
0
23 May 2022
Discriminative Feature Learning Framework with Gradient Preference for
  Anomaly Detection
Discriminative Feature Learning Framework with Gradient Preference for Anomaly Detection
Muhao Xu
Xueying Zhou
Xizhan Gao
Wei-Xiong He
Sijie Niu
21
7
0
23 Apr 2022
Anomaly Detection in 3D Point Clouds using Deep Geometric Descriptors
Anomaly Detection in 3D Point Clouds using Deep Geometric Descriptors
Paul Bergmann
David Sattlegger
3DPC
30
57
0
23 Feb 2022
Anomaly Detection via Reverse Distillation from One-Class Embedding
Anomaly Detection via Reverse Distillation from One-Class Embedding
Hanqiu Deng
Xingyu Li
UQCV
114
448
0
26 Jan 2022
Data Invariants to Understand Unsupervised Out-of-Distribution Detection
Data Invariants to Understand Unsupervised Out-of-Distribution Detection
Lars Doorenbos
Raphael Sznitman
Pablo Márquez-Neila
OODD
27
6
0
26 Nov 2021
AnoSeg: Anomaly Segmentation Network Using Self-Supervised Learning
AnoSeg: Anomaly Segmentation Network Using Self-Supervised Learning
J. Song
Kyeongbo Kong
Ye In Park
Seonggyun Kim
Suk-Ju Kang
23
46
0
07 Oct 2021
A Multi-Scale A Contrario method for Unsupervised Image Anomaly
  Detection
A Multi-Scale A Contrario method for Unsupervised Image Anomaly Detection
Matías Tailanián
Pablo Musé
Álvaro Pardo
37
8
0
05 Oct 2021
Visual Anomaly Detection for Images: A Survey
Visual Anomaly Detection for Images: A Survey
Jie Yang
Rui Xu
Zhiquan Qi
Yong Shi
25
35
0
27 Sep 2021
Transfer Learning Gaussian Anomaly Detection by Fine-tuning
  Representations
Transfer Learning Gaussian Anomaly Detection by Fine-tuning Representations
Oliver Rippel
Arnav Chavan
Chucai Lei
Dorit Merhof
41
18
0
09 Aug 2021
Divide-and-Assemble: Learning Block-wise Memory for Unsupervised Anomaly
  Detection
Divide-and-Assemble: Learning Block-wise Memory for Unsupervised Anomaly Detection
Jinlei Hou
Yingying Zhang
Qiaoyong Zhong
Di Xie
Shiliang Pu
Hong Zhou
27
142
0
28 Jul 2021
Data augmentation and pre-trained networks for extremely low data
  regimes unsupervised visual inspection
Data augmentation and pre-trained networks for extremely low data regimes unsupervised visual inspection
Pierre Gutierrez
Antoine Cordier
Thais Caldeira
Théophile Sautory
18
4
0
02 Jun 2021
Semi-orthogonal Embedding for Efficient Unsupervised Anomaly
  Segmentation
Semi-orthogonal Embedding for Efficient Unsupervised Anomaly Segmentation
Jin-Hwa Kim
Do-Hyeong Kim
Saehoon Yi
Taehoon Lee
24
53
0
31 May 2021
Student-Teacher Feature Pyramid Matching for Anomaly Detection
Student-Teacher Feature Pyramid Matching for Anomaly Detection
Guodong Wang
Shumin Han
Errui Ding
Di Huang
23
214
0
07 Mar 2021
Modeling the Distribution of Normal Data in Pre-Trained Deep Features
  for Anomaly Detection
Modeling the Distribution of Normal Data in Pre-Trained Deep Features for Anomaly Detection
Oliver Rippel
Patrick Mertens
Dorit Merhof
27
236
0
28 May 2020
Previous
12