ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.07788
  4. Cited By
Reliable Local Explanations for Machine Listening

Reliable Local Explanations for Machine Listening

15 May 2020
Saumitra Mishra
Emmanouil Benetos
Bob L. T. Sturm
S. Dixon
    AAML
    FAtt
ArXivPDFHTML

Papers citing "Reliable Local Explanations for Machine Listening"

7 / 7 papers shown
Title
Listenable Maps for Zero-Shot Audio Classifiers
Listenable Maps for Zero-Shot Audio Classifiers
Francesco Paissan
Luca Della Libera
Mirco Ravanelli
Cem Subakan
40
4
0
27 May 2024
Concept-Based Techniques for "Musicologist-friendly" Explanations in a
  Deep Music Classifier
Concept-Based Techniques for "Musicologist-friendly" Explanations in a Deep Music Classifier
Francesco Foscarin
Katharina Hoedt
Verena Praher
A. Flexer
Gerhard Widmer
26
11
0
26 Aug 2022
Listen to Interpret: Post-hoc Interpretability for Audio Networks with
  NMF
Listen to Interpret: Post-hoc Interpretability for Audio Networks with NMF
Jayneel Parekh
Sanjeel Parekh
Pavlo Mozharovskyi
Florence dÁlché-Buc
G. Richard
24
22
0
23 Feb 2022
A Survey on the Robustness of Feature Importance and Counterfactual
  Explanations
A Survey on the Robustness of Feature Importance and Counterfactual Explanations
Saumitra Mishra
Sanghamitra Dutta
Jason Long
Daniele Magazzeni
AAML
27
57
0
30 Oct 2021
On the Veracity of Local, Model-agnostic Explanations in Audio
  Classification: Targeted Investigations with Adversarial Examples
On the Veracity of Local, Model-agnostic Explanations in Audio Classification: Targeted Investigations with Adversarial Examples
Verena Praher
Katharina Prinz
A. Flexer
Gerhard Widmer
AAML
FAtt
24
9
0
19 Jul 2021
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
257
3,698
0
28 Feb 2017
1