Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.10036
Cited By
Uncertainty Quantification Using Neural Networks for Molecular Property Prediction
20 May 2020
Lior Hirschfeld
Kyle Swanson
Kevin Kaichuang Yang
Regina Barzilay
Connor W. Coley
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Uncertainty Quantification Using Neural Networks for Molecular Property Prediction"
21 / 21 papers shown
Title
Leveraging Active Subspaces to Capture Epistemic Model Uncertainty in Deep Generative Models for Molecular Design
A. N. M. N. Abeer
Sanket R. Jantre
Nathan M. Urban
Byung-Jun Yoon
44
1
0
30 Apr 2024
Kermut: Composite kernel regression for protein variant effects
Peter Mørch Groth
Mads Herbert Kerrn
Lars Olsen
Jesper Salomon
Wouter Boomsma
36
2
0
09 Apr 2024
Pareto Optimization to Accelerate Multi-Objective Virtual Screening
Jenna C. Fromer
David E. Graff
Connor W. Coley
23
7
0
16 Oct 2023
Large-scale Pretraining Improves Sample Efficiency of Active Learning based Molecule Virtual Screening
Zhonglin Cao
Simone Sciabola
Ye Wang
32
1
0
20 Sep 2023
Development and Evaluation of Conformal Prediction Methods for QSAR
Yuting Xu
Andy Liaw
R. Sheridan
V. Svetnik
21
2
0
03 Apr 2023
Fast Uncertainty Estimates in Deep Learning Interatomic Potentials
Albert J. W. Zhu
Simon L. Batzner
Albert Musaelian
Boris Kozinsky
22
45
0
17 Nov 2022
Confidence-Nets: A Step Towards better Prediction Intervals for regression Neural Networks on small datasets
M. Altayeb
A. Elamin
Hozaifa Ahmed
Eithar Elfatih Elfadil Ibrahim
Omer Haydar
Saba Abdulaziz
Najlaa H. M. Mohamed
UQCV
13
0
0
31 Oct 2022
Building Robust Machine Learning Models for Small Chemical Science Data: The Case of Shear Viscosity
Nikhil V. S. Avula
S. K. Veesam
Sudarshan Behera
S. Balasubramanian
24
8
0
23 Aug 2022
Uncertainty-Aware Mixed-Variable Machine Learning for Materials Design
Hengrui Zhang
WeiWayneChen
Akshay Iyer
D. Apley
Wei-Neng Chen
AI4CE
31
11
0
11 Jul 2022
Learning Uncertainty with Artificial Neural Networks for Improved Predictive Process Monitoring
Hans Weytjens
Jochen De Weerdt
19
17
0
13 Jun 2022
Self-focusing virtual screening with active design space pruning
David E. Graff
Matteo Aldeghi
Joseph A. Morrone
K. E. Jordan
Edward O. Pyzer-Knapp
Connor W. Coley
24
24
0
03 May 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler
Bertrand Charpentier
Simon Geisler
Daniel Zügner
Stephan Günnemann
UQCV
BDL
28
80
0
26 Oct 2021
Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions
Nicholas Gao
Stephan Günnemann
19
36
0
11 Oct 2021
An Uncertainty-aware Loss Function for Training Neural Networks with Calibrated Predictions
Afshar Shamsi
Hamzeh Asgharnezhad
AmirReza Tajally
Saeid Nahavandi
Henry Leung
UQCV
38
6
0
07 Oct 2021
Few-shot Conformal Prediction with Auxiliary Tasks
Adam Fisch
Tal Schuster
Tommi Jaakkola
Regina Barzilay
181
53
0
17 Feb 2021
Accelerating high-throughput virtual screening through molecular pool-based active learning
David E. Graff
E. Shakhnovich
Connor W. Coley
76
142
0
13 Dec 2020
Metrics for Benchmarking and Uncertainty Quantification: Quality, Applicability, and a Path to Best Practices for Machine Learning in Chemistry
G. Vishwakarma
Aditya Sonpal
J. Hachmann
4
46
0
30 Sep 2020
Drug discovery with explainable artificial intelligence
José Jiménez-Luna
F. Grisoni
G. Schneider
25
625
0
01 Jul 2020
Deep Learning and Knowledge-Based Methods for Computer Aided Molecular Design -- Toward a Unified Approach: State-of-the-Art and Future Directions
Abdulelah S. Alshehri
R. Gani
Fengqi You
AI4CE
22
83
0
18 May 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1