Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.10224
Cited By
v1
v2 (latest)
The Random Feature Model for Input-Output Maps between Banach Spaces
20 May 2020
Nicholas H. Nelsen
Andrew M. Stuart
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The Random Feature Model for Input-Output Maps between Banach Spaces"
50 / 50 papers shown
Title
LaPON: A Lagrange's-mean-value-theorem-inspired operator network for solving PDEs and its application on NSE
Siwen Zhang
Xizeng Zhao
Zhengzhi Deng
Zhaoyuan Huang
Gang Tao
Nuo Xu
Zhouteng Ye
68
0
0
18 May 2025
On the choice of the non-trainable internal weights in random feature maps
Pinak Mandal
Georg Gottwald
Nicholas Cranch
TPM
89
1
0
07 Aug 2024
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Oliver R. A. Dunbar
Nicholas H. Nelsen
Maya Mutic
147
7
0
30 Jun 2024
Operator Learning of Lipschitz Operators: An Information-Theoretic Perspective
Samuel Lanthaler
91
4
0
26 Jun 2024
RandONet: Shallow-Networks with Random Projections for learning linear and nonlinear operators
Gianluca Fabiani
Ioannis G. Kevrekidis
Constantinos Siettos
A. Yannacopoulos
104
13
0
08 Jun 2024
A Priori Uncertainty Quantification of Reacting Turbulence Closure Models using Bayesian Neural Networks
Graham Pash
M. Hassanaly
S. Yellapantula
AI4CE
85
0
0
28 Feb 2024
Learning About Structural Errors in Models of Complex Dynamical Systems
Jin-Long Wu
Matthew E. Levine
Tapio Schneider
Andrew M. Stuart
AI4CE
82
18
0
29 Dec 2023
Diffusion Random Feature Model
Esha Saha
Giang Tran
DiffM
70
0
0
06 Oct 2023
Energy-Dissipative Evolutionary Deep Operator Neural Networks
Jiahao Zhang
Shiheng Zhang
Jie Shen
Guang Lin
51
12
0
09 Jun 2023
Efficient PDE-Constrained optimization under high-dimensional uncertainty using derivative-informed neural operators
Dingcheng Luo
Thomas O'Leary-Roseberry
Peng Chen
Omar Ghattas
AI4CE
83
16
0
31 May 2023
Nonlocality and Nonlinearity Implies Universality in Operator Learning
S. Lanthaler
Zong-Yi Li
Andrew M. Stuart
75
17
0
26 Apr 2023
Operator learning with PCA-Net: upper and lower complexity bounds
S. Lanthaler
72
26
0
28 Mar 2023
RecFNO: a resolution-invariant flow and heat field reconstruction method from sparse observations via Fourier neural operator
Xiaoyu Zhao
Xiaoqian Chen
Zhiqiang Gong
Weien Zhou
Wen Yao
Yunyang Zhang
AI4CE
68
24
0
20 Feb 2023
A Neural PDE Solver with Temporal Stencil Modeling
Zhiqing Sun
Yiming Yang
Shinjae Yoo
DiffM
AI4CE
98
17
0
16 Feb 2023
Score-based Diffusion Models in Function Space
Jae Hyun Lim
Nikola B. Kovachki
Ricardo Baptista
Christopher Beckham
Kamyar Azizzadenesheli
...
Karsten Kreis
Jan Kautz
Christopher Pal
Arash Vahdat
Anima Anandkumar
DiffM
193
50
0
14 Feb 2023
Deep Operator Learning Lessens the Curse of Dimensionality for PDEs
Ke Chen
Chunmei Wang
Haizhao Yang
AI4CE
68
14
0
28 Jan 2023
Koopman neural operator as a mesh-free solver of non-linear partial differential equations
Wei Xiong
Xiaomeng Huang
Ziyang Zhang
Ruixuan Deng
Pei Sun
Yang Tian
AI4CE
78
35
0
24 Jan 2023
Non-equispaced Fourier Neural Solvers for PDEs
Haitao Lin
Lirong Wu
Yongjie Xu
Yufei Huang
Siyuan Li
Guojiang Zhao
Z. Stan
76
8
0
09 Dec 2022
Catch-22s of reservoir computing
Yuanzhao Zhang
Sean P. Cornelius
89
13
0
18 Oct 2022
Transformer Meets Boundary Value Inverse Problems
Ruchi Guo
Shuhao Cao
Long Chen
MedIm
124
23
0
29 Sep 2022
Data-driven soliton mappings for integrable fractional nonlinear wave equations via deep learning with Fourier neural operator
Ming Zhong
Zhenya Yan
29
17
0
29 Aug 2022
Approximate Bayesian Neural Operators: Uncertainty Quantification for Parametric PDEs
Emilia Magnani
Nicholas Kramer
Runa Eschenhagen
Lorenzo Rosasco
Philipp Hennig
UQCV
BDL
62
13
0
02 Aug 2022
Semi-supervised Learning of Partial Differential Operators and Dynamical Flows
Michael Rotman
A. Dekel
R. Ber
Lior Wolf
Yaron Oz
AI4CE
25
4
0
28 Jul 2022
Derivative-Informed Neural Operator: An Efficient Framework for High-Dimensional Parametric Derivative Learning
Thomas O'Leary-Roseberry
Peng Chen
Umberto Villa
Omar Ghattas
AI4CE
102
42
0
21 Jun 2022
NOMAD: Nonlinear Manifold Decoders for Operator Learning
Jacob H. Seidman
Georgios Kissas
P. Perdikaris
George J. Pappas
AI4CE
103
78
0
07 Jun 2022
Transformer for Partial Differential Equations' Operator Learning
Zijie Li
Kazem Meidani
A. Farimani
117
172
0
26 May 2022
STONet: A Neural-Operator-Driven Spatio-temporal Network
Haitao Lin
Guojiang Zhao
Lirong Wu
Stan Z. Li
AI4TS
AI4CE
70
1
0
18 Apr 2022
Neural Operator with Regularity Structure for Modeling Dynamics Driven by SPDEs
Tailin Wu
Qi Meng
Bin Chen
Shiqi Gong
Yue Wang
Wei Chen
Rongchan Zhu
Zhirui Ma
Tie-Yan Liu
AI4CE
86
11
0
13 Apr 2022
MIONet: Learning multiple-input operators via tensor product
Pengzhan Jin
Shuai Meng
Lu Lu
95
175
0
12 Feb 2022
Towards Empirical Process Theory for Vector-Valued Functions: Metric Entropy of Smooth Function Classes
Junhyung Park
Krikamol Muandet
73
10
0
09 Feb 2022
Learning Operators with Coupled Attention
Georgios Kissas
Jacob H. Seidman
Leonardo Ferreira Guilhoto
V. Preciado
George J. Pappas
P. Perdikaris
86
113
0
04 Jan 2022
Learning High-Dimensional Parametric Maps via Reduced Basis Adaptive Residual Networks
Thomas O'Leary-Roseberry
Xiaosong Du
A. Chaudhuri
J. Martins
Karen E. Willcox
Omar Ghattas
66
23
0
14 Dec 2021
Variational Regularization in Inverse Problems and Machine Learning
Martin Burger
18
3
0
08 Dec 2021
Physics-Informed Neural Operator for Learning Partial Differential Equations
Zong-Yi Li
Hongkai Zheng
Nikola B. Kovachki
David Jin
Haoxuan Chen
Burigede Liu
Kamyar Azizzadenesheli
Anima Anandkumar
AI4CE
127
427
0
06 Nov 2021
Convergence Rates for Learning Linear Operators from Noisy Data
Maarten V. de Hoop
Nikola B. Kovachki
Nicholas H. Nelsen
Andrew M. Stuart
171
58
0
27 Aug 2021
Learning Partial Differential Equations in Reproducing Kernel Hilbert Spaces
George Stepaniants
95
19
0
26 Aug 2021
Neural Operator: Learning Maps Between Function Spaces
Nikola B. Kovachki
Zong-Yi Li
Burigede Liu
Kamyar Azizzadenesheli
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
170
453
0
19 Aug 2021
Learning the optimal Tikhonov regularizer for inverse problems
Giovanni S. Alberti
Ernesto De Vito
Matti Lassas
Luca Ratti
Matteo Santacesaria
69
30
0
11 Jun 2021
Choose a Transformer: Fourier or Galerkin
Shuhao Cao
88
256
0
31 May 2021
Two-layer neural networks with values in a Banach space
Yury Korolev
95
24
0
05 May 2021
Solving and Learning Nonlinear PDEs with Gaussian Processes
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
84
157
0
24 Mar 2021
Learning the solution operator of parametric partial differential equations with physics-informed DeepOnets
Sizhuang He
Hanwen Wang
P. Perdikaris
AI4CE
104
715
0
19 Mar 2021
Reduced operator inference for nonlinear partial differential equations
E. Qian
Ionut-Gabriel Farcas
Karen E. Willcox
AI4CE
53
39
0
29 Jan 2021
DeepGreen: Deep Learning of Green's Functions for Nonlinear Boundary Value Problems
Craig Gin
D. Shea
Steven L. Brunton
J. Nathan Kutz
82
90
0
31 Dec 2020
Calibration and Uncertainty Quantification of Convective Parameters in an Idealized GCM
Oliver R. A. Dunbar
A. Garbuno-Iñigo
T. Schneider
Andrew M. Stuart
86
60
0
24 Dec 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
554
2,465
0
18 Oct 2020
A Kernel Two-Sample Test for Functional Data
George Wynne
Andrew B. Duncan
88
45
0
25 Aug 2020
Understanding Recurrent Neural Networks Using Nonequilibrium Response Theory
Soon Hoe Lim
81
16
0
19 Jun 2020
Multipole Graph Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
230
395
0
16 Jun 2020
Numerical Solution of the Parametric Diffusion Equation by Deep Neural Networks
Moritz Geist
P. Petersen
Mones Raslan
R. Schneider
Gitta Kutyniok
102
83
0
25 Apr 2020
1