ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.10360
  4. Cited By
VideoForensicsHQ: Detecting High-quality Manipulated Face Videos

VideoForensicsHQ: Detecting High-quality Manipulated Face Videos

20 May 2020
Gereon Fox
Wentao Liu
Hyeongwoo Kim
Hans-Peter Seidel
Mohamed A. Elgharib
Christian Theobalt
    CVBM
ArXivPDFHTML

Papers citing "VideoForensicsHQ: Detecting High-quality Manipulated Face Videos"

4 / 4 papers shown
Title
Counterfactual Explanations for Face Forgery Detection via Adversarial
  Removal of Artifacts
Counterfactual Explanations for Face Forgery Detection via Adversarial Removal of Artifacts
Yang Li
Songlin Yang
Wei Wang
Ziwen He
Bo Peng
Jing Dong
AAML
24
2
0
12 Apr 2024
Deepfake: Definitions, Performance Metrics and Standards, Datasets and
  Benchmarks, and a Meta-Review
Deepfake: Definitions, Performance Metrics and Standards, Datasets and Benchmarks, and a Meta-Review
Enes ALTUNCU
V. N. Franqueira
Shujun Li
14
11
0
21 Aug 2022
KoDF: A Large-scale Korean DeepFake Detection Dataset
KoDF: A Large-scale Korean DeepFake Detection Dataset
Patrick Kwon
J. You
Gyuhyeon Nam
Sungwoo Park
Gyeongsu Chae
16
99
0
18 Mar 2021
Recasting Residual-based Local Descriptors as Convolutional Neural
  Networks: an Application to Image Forgery Detection
Recasting Residual-based Local Descriptors as Convolutional Neural Networks: an Application to Image Forgery Detection
D. Cozzolino
Giovanni Poggi
L. Verdoliva
101
324
0
14 Mar 2017
1