ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.10953
  4. Cited By
A Concise Review of Recent Few-shot Meta-learning Methods

A Concise Review of Recent Few-shot Meta-learning Methods

22 May 2020
Xiaoxu Li
Z. Sun
Jing-Hao Xue
Zhanyu Ma
    VLM
    OffRL
ArXivPDFHTML

Papers citing "A Concise Review of Recent Few-shot Meta-learning Methods"

5 / 5 papers shown
Title
Predicting Brain Multigraph Population From a Single Graph Template for
  Boosting One-Shot Classification
Predicting Brain Multigraph Population From a Single Graph Template for Boosting One-Shot Classification
Furkan Pala
I. Rekik
24
2
0
13 Sep 2022
One Representative-Shot Learning Using a Population-Driven Template with
  Application to Brain Connectivity Classification and Evolution Prediction
One Representative-Shot Learning Using a Population-Driven Template with Application to Brain Connectivity Classification and Evolution Prediction
Umut Guvercin
Mohammed Amine Gharsallaoui
I. Rekik
27
6
0
06 Oct 2021
BSNet: Bi-Similarity Network for Few-shot Fine-grained Image
  Classification
BSNet: Bi-Similarity Network for Few-shot Fine-grained Image Classification
Xiaoxu Li
Jijie Wu
Z. Sun
Zhanyu Ma
Jie Cao
Jing-Hao Xue
11
124
0
29 Nov 2020
Probabilistic Model-Agnostic Meta-Learning
Probabilistic Model-Agnostic Meta-Learning
Chelsea Finn
Kelvin Xu
Sergey Levine
BDL
165
666
0
07 Jun 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
314
11,681
0
09 Mar 2017
1