ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.14262
  4. Cited By
Uncertainty Evaluation Metric for Brain Tumour Segmentation

Uncertainty Evaluation Metric for Brain Tumour Segmentation

28 May 2020
Raghav Mehta
Angelos Filos
Y. Gal
Tal Arbel
    UQCV
ArXivPDFHTML

Papers citing "Uncertainty Evaluation Metric for Brain Tumour Segmentation"

16 / 16 papers shown
Title
Comparative Benchmarking of Failure Detection Methods in Medical Image
  Segmentation: Unveiling the Role of Confidence Aggregation
Comparative Benchmarking of Failure Detection Methods in Medical Image Segmentation: Unveiling the Role of Confidence Aggregation
M. Zenk
David Zimmerer
Fabian Isensee
Jeremias Traub
T. Norajitra
Paul F. Jäger
Klaus H. Maier-Hein
37
4
0
05 Jun 2024
QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation
  Challenge
QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge
Hongwei Bran
Fernando Navarro
Ivan Ezhov
Amirhossein Bayat
Dhritiman Das
...
E. Konukoglu
Andras Jakab
Spyridon Bakas
Leo Joskowicz
Bjoern H. Menze
UQCV
37
7
0
19 Mar 2024
ValUES: A Framework for Systematic Validation of Uncertainty Estimation
  in Semantic Segmentation
ValUES: A Framework for Systematic Validation of Uncertainty Estimation in Semantic Segmentation
Kim-Celine Kahl
Carsten T. Lüth
M. Zenk
Klaus Maier-Hein
Paul F. Jaeger
UQCV
22
16
0
16 Jan 2024
Trustworthy clinical AI solutions: a unified review of uncertainty
  quantification in deep learning models for medical image analysis
Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis
Benjamin Lambert
Florence Forbes
A. Tucholka
Senan Doyle
Harmonie Dehaene
M. Dojat
24
76
0
05 Oct 2022
QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in
  Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking
  Results
QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results
Raghav Mehta
Angelos Filos
Ujjwal Baid
C. Sako
Richard McKinley
...
Christos Davatzikos
Bjoern H. Menze
Spyridon Bakas
Y. Gal
Tal Arbel
UQCV
17
44
0
19 Dec 2021
Diffusion Models for Implicit Image Segmentation Ensembles
Diffusion Models for Implicit Image Segmentation Ensembles
J. Wolleb
Robin Sandkühler
Florentin Bieder
Philippe Valmaggia
Philippe C. Cattin
DiffM
MedIm
VLM
10
265
0
06 Dec 2021
SUPER-Net: Trustworthy Medical Image Segmentation with Uncertainty
  Propagation in Encoder-Decoder Networks
SUPER-Net: Trustworthy Medical Image Segmentation with Uncertainty Propagation in Encoder-Decoder Networks
Giuseppina Carannante
Dimah Dera
Nidhal C.Bouaynaya
Hassan M. Fathallah-Shaykh
Ghulam Rasool
UQCV
AAML
OOD
27
6
0
10 Nov 2021
Robustness via Uncertainty-aware Cycle Consistency
Robustness via Uncertainty-aware Cycle Consistency
Uddeshya Upadhyay
Yanbei Chen
Zeynep Akata
20
21
0
24 Oct 2021
A Quantitative Comparison of Epistemic Uncertainty Maps Applied to
  Multi-Class Segmentation
A Quantitative Comparison of Epistemic Uncertainty Maps Applied to Multi-Class Segmentation
Robin Camarasa
D. Bos
J. Hendrikse
P. Nederkoorn
D. Epidemiology
D. Neurology
Department of Computer Science
UQCV
24
12
0
22 Sep 2021
HAD-Net: A Hierarchical Adversarial Knowledge Distillation Network for
  Improved Enhanced Tumour Segmentation Without Post-Contrast Images
HAD-Net: A Hierarchical Adversarial Knowledge Distillation Network for Improved Enhanced Tumour Segmentation Without Post-Contrast Images
Saverio Vadacchino
Raghav Mehta
N. Sepahvand
Brennan Nichyporuk
James J. Clark
Tal Arbel
MedIm
12
14
0
30 Mar 2021
Uncertainty-aware Generalized Adaptive CycleGAN
Uncertainty-aware Generalized Adaptive CycleGAN
Uddeshya Upadhyay
Yanbei Chen
Zeynep Akata
11
6
0
23 Feb 2021
SoftSeg: Advantages of soft versus binary training for image
  segmentation
SoftSeg: Advantages of soft versus binary training for image segmentation
C. Gros
A. Lemay
Julien Cohen-Adad
25
70
0
18 Nov 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
37
1,877
0
12 Nov 2020
The Liver Tumor Segmentation Benchmark (LiTS)
The Liver Tumor Segmentation Benchmark (LiTS)
Patrick Bilic
P. Christ
Hongwei Bran Li
Eugene Vorontsov
Avi Ben-Cohen
...
L. Soler
Bram van Ginneken
H. Greenspan
Leo Joskowicz
Bjoern H. Menze
22
990
0
13 Jan 2019
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
279
9,136
0
06 Jun 2015
1