ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.00339
  4. Cited By
Rethinking Assumptions in Deep Anomaly Detection

Rethinking Assumptions in Deep Anomaly Detection

30 May 2020
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Klaus-Robert Muller
Marius Kloft
ArXivPDFHTML

Papers citing "Rethinking Assumptions in Deep Anomaly Detection"

19 / 19 papers shown
Title
Semi-supervised Anomaly Detection with Extremely Limited Labels in Dynamic Graphs
Semi-supervised Anomaly Detection with Extremely Limited Labels in Dynamic Graphs
Jiazhen Chen
Sichao Fu
Zheng Ma
M. Feng
T. Wirjanto
Qinmu Peng
43
0
0
25 Jan 2025
MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning
  and Entropy-based Scoring
MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring
Eirini Cholopoulou
D. Iakovidis
AAML
28
0
0
20 Sep 2024
Iterative Deployment Exposure for Unsupervised Out-of-Distribution Detection
Iterative Deployment Exposure for Unsupervised Out-of-Distribution Detection
Lars Doorenbos
Raphael Sznitman
Pablo Márquez-Neila
OODD
33
0
0
04 Jun 2024
Autoencoder with Group-based Decoder and Multi-task Optimization for
  Anomalous Sound Detection
Autoencoder with Group-based Decoder and Multi-task Optimization for Anomalous Sound Detection
Yifan Zhou
Dongxing Xu
Haoran Wei
Yanhua Long
26
0
0
15 Nov 2023
Set Learning for Accurate and Calibrated Models
Set Learning for Accurate and Calibrated Models
Lukas Muttenthaler
Robert A. Vandermeulen
Qiuyi Zhang
Thomas Unterthiner
Klaus-Robert Muller
34
2
0
05 Jul 2023
Disaster Anomaly Detector via Deeper FCDDs for Explainable Initial
  Responses
Disaster Anomaly Detector via Deeper FCDDs for Explainable Initial Responses
Takato Yasuno
Masahiro Okano
Junichiro Fujii
24
0
0
05 Jun 2023
Wooden Sleeper Deterioration Detection for Rural Railway Prognostics
  Using Unsupervised Deeper FCDDs
Wooden Sleeper Deterioration Detection for Rural Railway Prognostics Using Unsupervised Deeper FCDDs
Takato Yasuno
Masahiro Okano
Junichiro Fujii
21
1
0
09 May 2023
TFAD: A Decomposition Time Series Anomaly Detection Architecture with
  Time-Frequency Analysis
TFAD: A Decomposition Time Series Anomaly Detection Architecture with Time-Frequency Analysis
Chaoli Zhang
Tian Zhou
Qingsong Wen
Liang Sun
AI4TS
32
66
0
18 Oct 2022
Improvement of Serial Approach to Anomalous Sound Detection by
  Incorporating Two Binary Cross-Entropies for Outlier Exposure
Improvement of Serial Approach to Anomalous Sound Detection by Incorporating Two Binary Cross-Entropies for Outlier Exposure
Ibuki Kuroyanagi
Tomoki Hayashi
K. Takeda
T. Toda
22
12
0
13 Jun 2022
[Reproducibility Report] Explainable Deep One-Class Classification
[Reproducibility Report] Explainable Deep One-Class Classification
João P C Bertoldo
Etienne Decencière
23
0
0
06 Jun 2022
Semi-supervised anomaly detection algorithm based on KL divergence
  (SAD-KL)
Semi-supervised anomaly detection algorithm based on KL divergence (SAD-KL)
C. Lee
Kibae Lee
39
4
0
28 Mar 2022
No Shifted Augmentations (NSA): compact distributions for robust
  self-supervised Anomaly Detection
No Shifted Augmentations (NSA): compact distributions for robust self-supervised Anomaly Detection
Mohamed Yousef
Marcel R. Ackermann
Unmesh Kurup
Tom E. Bishop
OODD
OOD
40
3
0
19 Mar 2022
Data refinement for fully unsupervised visual inspection using
  pre-trained networks
Data refinement for fully unsupervised visual inspection using pre-trained networks
Antoine Cordier
Benjamin Missaoui
Pierre Gutierrez
35
5
0
25 Feb 2022
Out-of-Distribution Detection Using Outlier Detection Methods
Out-of-Distribution Detection Using Outlier Detection Methods
Jan Diers
Christian Pigorsch
OODD
24
3
0
18 Aug 2021
Transfer Learning Gaussian Anomaly Detection by Fine-tuning
  Representations
Transfer Learning Gaussian Anomaly Detection by Fine-tuning Representations
Oliver Rippel
Arnav Chavan
Chucai Lei
Dorit Merhof
44
18
0
09 Aug 2021
Neural Contextual Anomaly Detection for Time Series
Neural Contextual Anomaly Detection for Time Series
Chris U. Carmona
Franccois-Xavier Aubet
Valentin Flunkert
Jan Gasthaus
BDL
AI4TS
59
63
0
16 Jul 2021
Deep Random Projection Outlyingness for Unsupervised Anomaly Detection
Deep Random Projection Outlyingness for Unsupervised Anomaly Detection
Martin Bauw
Santiago Velasco-Forero
Jesús Angulo
C. Adnet
O. Airiau
19
5
0
08 Jun 2021
Data augmentation and pre-trained networks for extremely low data
  regimes unsupervised visual inspection
Data augmentation and pre-trained networks for extremely low data regimes unsupervised visual inspection
Pierre Gutierrez
Antoine Cordier
Thais Caldeira
Théophile Sautory
18
4
0
02 Jun 2021
Deep Anomaly Detection by Residual Adaptation
Deep Anomaly Detection by Residual Adaptation
Lucas Deecke
Lukas Ruff
Robert A. Vandermeulen
Hakan Bilen
UQCV
28
4
0
05 Oct 2020
1