ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.02683
  4. Cited By
Uncertainty quantification in medical image segmentation with
  normalizing flows
v1v2 (latest)

Uncertainty quantification in medical image segmentation with normalizing flows

4 June 2020
Raghavendra Selvan
F. Faye
Jon Middleton
A. Pai
    MedIm
ArXiv (abs)PDFHTML

Papers citing "Uncertainty quantification in medical image segmentation with normalizing flows"

18 / 18 papers shown
Title
Epistemic Uncertainty in Conformal Scores: A Unified Approach
Epistemic Uncertainty in Conformal Scores: A Unified Approach
Luben M. C. Cabezas
Vagner S. Santos
Thiago Rodrigo Ramos
Rafael Izbicki
518
1
0
10 Feb 2025
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
288
1
0
25 Nov 2024
MSEG-VCUQ: Multimodal SEGmentation with Enhanced Vision Foundation Models, Convolutional Neural Networks, and Uncertainty Quantification for High-Speed Video Phase Detection Data
MSEG-VCUQ: Multimodal SEGmentation with Enhanced Vision Foundation Models, Convolutional Neural Networks, and Uncertainty Quantification for High-Speed Video Phase Detection Data
Chika Maduabuchi
Ericmoore Jossou
Matteo Bucci
122
0
0
12 Nov 2024
Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in
  Quantifying Uncertainty Propagation
Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in Quantifying Uncertainty Propagation
Minglei Yang
Pengjun Wang
Ming Fan
Dan Lu
Yanzhao Cao
Guannan Zhang
AI4CE
148
1
0
31 Mar 2024
Investigating and Improving Latent Density Segmentation Models for
  Aleatoric Uncertainty Quantification in Medical Imaging
Investigating and Improving Latent Density Segmentation Models for Aleatoric Uncertainty Quantification in Medical Imaging
M. Valiuddin
Christiaan Viviers
R. V. Sloun
Peter H. N. de With
Fons van der Sommen
UQCV
100
2
0
31 Jul 2023
Probabilistic 3D segmentation for aleatoric uncertainty quantification
  in full 3D medical data
Probabilistic 3D segmentation for aleatoric uncertainty quantification in full 3D medical data
Christiaan Viviers
Amaan Valiuddin
Peter H. N. de With
Fons van der Sommen
86
5
0
01 May 2023
Ambiguous Medical Image Segmentation using Diffusion Models
Ambiguous Medical Image Segmentation using Diffusion Models
Aimon Rahman
Jeya Maria Jose Valanarasu
Ilker Hacihaliloglu
V. Patel
MedImDiffM
99
106
0
10 Apr 2023
BerDiff: Conditional Bernoulli Diffusion Model for Medical Image
  Segmentation
BerDiff: Conditional Bernoulli Diffusion Model for Medical Image Segmentation
Tao Chen
Chenhui Wang
Hongming Shan
DiffMMedIm
78
35
0
10 Apr 2023
That Label's Got Style: Handling Label Style Bias for Uncertain Image
  Segmentation
That Label's Got Style: Handling Label Style Bias for Uncertain Image Segmentation
Kilian Zepf
Eike Petersen
J. Frellsen
Aasa Feragen
56
7
0
28 Mar 2023
Laplacian Segmentation Networks: Improved Epistemic Uncertainty from
  Spatial Aleatoric Uncertainty
Laplacian Segmentation Networks: Improved Epistemic Uncertainty from Spatial Aleatoric Uncertainty
Kilian Zepf
Selma Wanna
M. Miani
Juston Moore
J. Frellsen
Søren Hauberg
Aasa Feragen
Frederik Warburg
UQCV
59
4
0
23 Mar 2023
The Treasure Beneath Multiple Annotations: An Uncertainty-aware Edge
  Detector
The Treasure Beneath Multiple Annotations: An Uncertainty-aware Edge Detector
Caixia Zhou
Yaping Huang
Mengyang Pu
Q. Guan
Li Huang
Haibin Ling
UQCV
80
37
0
21 Mar 2023
Stochastic Segmentation with Conditional Categorical Diffusion Models
Stochastic Segmentation with Conditional Categorical Diffusion Models
L. Zbinden
Lars Doorenbos
Theodoros Pissas
Adrian Thomas Huber
Raphael Sznitman
Pablo Márquez-Neila
DiffM
72
31
0
15 Mar 2023
Trustworthy clinical AI solutions: a unified review of uncertainty
  quantification in deep learning models for medical image analysis
Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis
Benjamin Lambert
Florence Forbes
A. Tucholka
Senan Doyle
Harmonie Dehaene
M. Dojat
110
90
0
05 Oct 2022
Generalized Probabilistic U-Net for medical image segementation
Generalized Probabilistic U-Net for medical image segementation
Ishaan Bhat
J. Pluim
Hugo J. Kuijf
OOD
47
9
0
26 Jul 2022
Improving Aleatoric Uncertainty Quantification in Multi-Annotated
  Medical Image Segmentation with Normalizing Flows
Improving Aleatoric Uncertainty Quantification in Multi-Annotated Medical Image Segmentation with Normalizing Flows
M. Valiuddin
Christiaan Viviers
R. V. Sloun
Peter H. N. de With
Fons van der Sommen
UQCV
55
17
0
04 Aug 2021
Data synthesis and adversarial networks: A review and meta-analysis in
  cancer imaging
Data synthesis and adversarial networks: A review and meta-analysis in cancer imaging
Richard Osuala
Kaisar Kushibar
Lidia Garrucho
Akis Linardos
Zuzanna Szafranowska
Stefan Klein
Ben Glocker
Oliver Díaz
Karim Lekadir
MedIm
104
45
0
20 Jul 2021
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDLUQCV
369
1,947
0
12 Nov 2020
Uncertain-DeepSSM: From Images to Probabilistic Shape Models
Uncertain-DeepSSM: From Images to Probabilistic Shape Models
Jadie Adams
Riddhish Bhalodia
Shireen Y. Elhabian
54
24
0
13 Jul 2020
1