ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.03179
  4. Cited By
Discovering Parametric Activation Functions

Discovering Parametric Activation Functions

5 June 2020
G. Bingham
Risto Miikkulainen
    ODL
ArXivPDFHTML

Papers citing "Discovering Parametric Activation Functions"

11 / 11 papers shown
Title
Cauchy activation function and XNet
Cauchy activation function and XNet
Xin Li
Zhihong Xia
Hongkun Zhang
50
4
0
28 Sep 2024
KAN: Kolmogorov-Arnold Networks
KAN: Kolmogorov-Arnold Networks
Ziming Liu
Yixuan Wang
Sachin Vaidya
Fabian Ruehle
James Halverson
Marin Soljacic
Thomas Y. Hou
Max Tegmark
98
485
0
30 Apr 2024
Efficient Activation Function Optimization through Surrogate Modeling
Efficient Activation Function Optimization through Surrogate Modeling
G. Bingham
Risto Miikkulainen
24
2
0
13 Jan 2023
Stochastic Adaptive Activation Function
Stochastic Adaptive Activation Function
Kyungsu Lee
Jaeseung Yang
Haeyun Lee
J. Y. Hwang
30
3
0
21 Oct 2022
How important are activation functions in regression and classification?
  A survey, performance comparison, and future directions
How important are activation functions in regression and classification? A survey, performance comparison, and future directions
Ameya Dilip Jagtap
George Karniadakis
AI4CE
37
71
0
06 Sep 2022
Evolution of Activation Functions for Deep Learning-Based Image
  Classification
Evolution of Activation Functions for Deep Learning-Based Image Classification
Raz Lapid
Moshe Sipper
27
11
0
24 Jun 2022
AutoInit: Analytic Signal-Preserving Weight Initialization for Neural
  Networks
AutoInit: Analytic Signal-Preserving Weight Initialization for Neural Networks
G. Bingham
Risto Miikkulainen
ODL
24
4
0
18 Sep 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
S. Feizi
AAML
37
45
0
15 Feb 2021
Effective Regularization Through Loss-Function Metalearning
Effective Regularization Through Loss-Function Metalearning
Santiago Gonzalez
Risto Miikkulainen
32
5
0
02 Oct 2020
Review: Deep Learning in Electron Microscopy
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
38
79
0
17 Sep 2020
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,639
0
03 Jul 2012
1