ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.03875
  4. Cited By
Coresets via Bilevel Optimization for Continual Learning and Streaming

Coresets via Bilevel Optimization for Continual Learning and Streaming

6 June 2020
Zalan Borsos
Mojmír Mutný
Andreas Krause
    CLL
ArXivPDFHTML

Papers citing "Coresets via Bilevel Optimization for Continual Learning and Streaming"

50 / 149 papers shown
Title
Data-centric Graph Learning: A Survey
Data-centric Graph Learning: A Survey
Jixi Liu
Deyu Bo
Cheng Yang
Haoran Dai
Qi Zhang
Yixin Xiao
Yufei Peng
Chuan Shi
GNN
27
19
0
08 Oct 2023
Primal Dual Continual Learning: Balancing Stability and Plasticity
  through Adaptive Memory Allocation
Primal Dual Continual Learning: Balancing Stability and Plasticity through Adaptive Memory Allocation
Juan Elenter
Navid Naderializadeh
Tara Javidi
Alejandro Ribeiro
CLL
15
1
0
29 Sep 2023
Anchor Points: Benchmarking Models with Much Fewer Examples
Anchor Points: Benchmarking Models with Much Fewer Examples
Rajan Vivek
Kawin Ethayarajh
Diyi Yang
Douwe Kiela
ALM
29
22
0
14 Sep 2023
Optimal Sample Selection Through Uncertainty Estimation and Its
  Application in Deep Learning
Optimal Sample Selection Through Uncertainty Estimation and Its Application in Deep Learning
Yong Lin
Chen Liu
Chen Ye
Qing Lian
Yuan Yao
Tong Zhang
27
4
0
05 Sep 2023
GRASP: A Rehearsal Policy for Efficient Online Continual Learning
GRASP: A Rehearsal Policy for Efficient Online Continual Learning
Md Yousuf Harun
Jhair Gallardo
Junyu Chen
Christopher Kanan
CLL
33
9
0
25 Aug 2023
Projection-Free Methods for Stochastic Simple Bilevel Optimization with
  Convex Lower-level Problem
Projection-Free Methods for Stochastic Simple Bilevel Optimization with Convex Lower-level Problem
Jincheng Cao
Ruichen Jiang
Nazanin Abolfazli
E. Y. Hamedani
Aryan Mokhtari
84
8
0
15 Aug 2023
Cost-effective On-device Continual Learning over Memory Hierarchy with
  Miro
Cost-effective On-device Continual Learning over Memory Hierarchy with Miro
Xinyue Ma
Suyeon Jeong
Minjia Zhang
Di Wang
Jonghyun Choi
Myeongjae Jeon
CLL
16
13
0
11 Aug 2023
An Introduction to Bi-level Optimization: Foundations and Applications
  in Signal Processing and Machine Learning
An Introduction to Bi-level Optimization: Foundations and Applications in Signal Processing and Machine Learning
Yihua Zhang
Prashant Khanduri
Ioannis C. Tsaknakis
Yuguang Yao
Min-Fong Hong
Sijia Liu
AI4CE
38
25
0
01 Aug 2023
Boosting Backdoor Attack with A Learnable Poisoning Sample Selection
  Strategy
Boosting Backdoor Attack with A Learnable Poisoning Sample Selection Strategy
Zihao Zhu
Mingda Zhang
Shaokui Wei
Li Shen
Yanbo Fan
Baoyuan Wu
AAML
SILM
44
9
0
14 Jul 2023
Performance Scaling via Optimal Transport: Enabling Data Selection from
  Partially Revealed Sources
Performance Scaling via Optimal Transport: Enabling Data Selection from Partially Revealed Sources
Feiyang Kang
H. Just
Anit Kumar Sahu
R. Jia
56
10
0
05 Jul 2023
Large-scale Dataset Pruning with Dynamic Uncertainty
Large-scale Dataset Pruning with Dynamic Uncertainty
Muyang He
Shuo Yang
Tiejun Huang
Bo-Lu Zhao
36
25
0
08 Jun 2023
A Generalized Alternating Method for Bilevel Learning under the
  Polyak-Łojasiewicz Condition
A Generalized Alternating Method for Bilevel Learning under the Polyak-Łojasiewicz Condition
Quan-Wu Xiao
Songtao Lu
Tianyi Chen
24
2
0
04 Jun 2023
BiSLS/SPS: Auto-tune Step Sizes for Stable Bi-level Optimization
BiSLS/SPS: Auto-tune Step Sizes for Stable Bi-level Optimization
Chen Fan
Gaspard Choné-Ducasse
Mark W. Schmidt
Christos Thrampoulidis
19
3
0
30 May 2023
On the Size and Approximation Error of Distilled Sets
On the Size and Approximation Error of Distilled Sets
Alaa Maalouf
M. Tukan
Noel Loo
Ramin Hasani
Mathias Lechner
Daniela Rus
DD
31
4
0
23 May 2023
Generalizing Dataset Distillation via Deep Generative Prior
Generalizing Dataset Distillation via Deep Generative Prior
George Cazenavette
Tongzhou Wang
Antonio Torralba
Alexei A. Efros
Jun-Yan Zhu
DD
91
84
0
02 May 2023
The Ideal Continual Learner: An Agent That Never Forgets
The Ideal Continual Learner: An Agent That Never Forgets
Liangzu Peng
Paris V. Giampouras
René Vidal
CLL
108
26
0
29 Apr 2023
Regularizing Second-Order Influences for Continual Learning
Regularizing Second-Order Influences for Continual Learning
Zhicheng Sun
Yadong Mu
G. Hua
CLL
14
22
0
20 Apr 2023
Continual Semantic Segmentation with Automatic Memory Sample Selection
Continual Semantic Segmentation with Automatic Memory Sample Selection
Lanyun Zhu
Tianrun Chen
Jianxiong Yin
Simon See
J. Liu
CLL
VLM
11
44
0
11 Apr 2023
Model Sparsity Can Simplify Machine Unlearning
Model Sparsity Can Simplify Machine Unlearning
Jinghan Jia
Jiancheng Liu
Parikshit Ram
Yuguang Yao
Gaowen Liu
Yang Liu
Pranay Sharma
Sijia Liu
MU
22
106
0
11 Apr 2023
RD-DPP: Rate-Distortion Theory Meets Determinantal Point Process to
  Diversify Learning Data Samples
RD-DPP: Rate-Distortion Theory Meets Determinantal Point Process to Diversify Learning Data Samples
Xiwen Chen
Huayu Li
Rahul Amin
Abolfazl Razi
11
3
0
09 Apr 2023
Loss-Curvature Matching for Dataset Selection and Condensation
Loss-Curvature Matching for Dataset Selection and Condensation
Seung-Jae Shin
Heesun Bae
DongHyeok Shin
Weonyoung Joo
Il-Chul Moon
DD
49
24
0
08 Mar 2023
Robustness-preserving Lifelong Learning via Dataset Condensation
Robustness-preserving Lifelong Learning via Dataset Condensation
Jinghan Jia
Yihua Zhang
Dogyoon Song
Sijia Liu
Alfred Hero
DD
28
3
0
07 Mar 2023
Dataset Distillation with Convexified Implicit Gradients
Dataset Distillation with Convexified Implicit Gradients
Noel Loo
Ramin Hasani
Mathias Lechner
Daniela Rus
DD
29
41
0
13 Feb 2023
A Comprehensive Survey of Continual Learning: Theory, Method and
  Application
A Comprehensive Survey of Continual Learning: Theory, Method and Application
Liyuan Wang
Xingxing Zhang
Hang Su
Jun Zhu
KELM
CLL
36
601
0
31 Jan 2023
Probabilistic Bilevel Coreset Selection
Probabilistic Bilevel Coreset Selection
Xiao Zhou
Renjie Pi
Weizhong Zhang
Yong Lin
Tong Zhang
NoLa
25
27
0
24 Jan 2023
Model Agnostic Sample Reweighting for Out-of-Distribution Learning
Model Agnostic Sample Reweighting for Out-of-Distribution Learning
Xiao Zhou
Yong Lin
Renjie Pi
Weizhong Zhang
Renzhe Xu
Peng Cui
Tong Zhang
OODD
33
60
0
24 Jan 2023
Dataset Distillation: A Comprehensive Review
Dataset Distillation: A Comprehensive Review
Ruonan Yu
Songhua Liu
Xinchao Wang
DD
50
121
0
17 Jan 2023
Hierarchical Memory Pool Based Edge Semi-Supervised Continual Learning
  Method
Hierarchical Memory Pool Based Edge Semi-Supervised Continual Learning Method
Xiangwei Wang
Rui Han
Chi Harold Liu
CLL
14
0
0
17 Jan 2023
Data Distillation: A Survey
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
45
73
0
11 Jan 2023
Training Data Influence Analysis and Estimation: A Survey
Training Data Influence Analysis and Estimation: A Survey
Zayd Hammoudeh
Daniel Lowd
TDI
29
82
0
09 Dec 2022
Self-supervised On-device Federated Learning from Unlabeled Streams
Self-supervised On-device Federated Learning from Unlabeled Streams
Jiahe Shi
Yawen Wu
Dewen Zeng
Jun Tao
Jingtong Hu
Yiyu Shi
FedML
19
5
0
02 Dec 2022
Black-box Coreset Variational Inference
Black-box Coreset Variational Inference
Dionysis Manousakas
H. Ritter
Theofanis Karaletsos
BDL
14
4
0
04 Nov 2022
Efficient Dataset Distillation Using Random Feature Approximation
Efficient Dataset Distillation Using Random Feature Approximation
Noel Loo
Ramin Hasani
Alexander Amini
Daniela Rus
DD
69
95
0
21 Oct 2022
A Survey of Dataset Refinement for Problems in Computer Vision Datasets
A Survey of Dataset Refinement for Problems in Computer Vision Datasets
Zhijing Wan
Zhixiang Wang
CheukTing Chung
Zheng Wang
36
8
0
21 Oct 2022
Few-shot Backdoor Attacks via Neural Tangent Kernels
Few-shot Backdoor Attacks via Neural Tangent Kernels
J. Hayase
Sewoong Oh
30
21
0
12 Oct 2022
Coresets for Relational Data and The Applications
Coresets for Relational Data and The Applications
Jiaxiang Chen
Qingyuan Yang
Ru Huang
Hu Ding
11
4
0
09 Oct 2022
Online Subset Selection using $α$-Core with no Augmented Regret
Online Subset Selection using ααα-Core with no Augmented Regret
Sourav Sahoo
Siddhant Chaudhary
S. Mukhopadhyay
Abhishek Sinha
OffRL
45
0
0
28 Sep 2022
SparCL: Sparse Continual Learning on the Edge
SparCL: Sparse Continual Learning on the Edge
Zifeng Wang
Zheng Zhan
Yifan Gong
Geng Yuan
Wei Niu
T. Jian
Bin Ren
Stratis Ioannidis
Yanzhi Wang
Jennifer Dy
CLL
60
59
0
20 Sep 2022
Learn the Time to Learn: Replay Scheduling in Continual Learning
Learn the Time to Learn: Replay Scheduling in Continual Learning
Marcus Klasson
Hedvig Kjellström
Chen Zhang
CLL
21
9
0
18 Sep 2022
Dataset Condensation with Latent Space Knowledge Factorization and
  Sharing
Dataset Condensation with Latent Space Knowledge Factorization and Sharing
Haebeom Lee
Dong Bok Lee
Sung Ju Hwang
DD
21
37
0
21 Aug 2022
A Benchmark and Empirical Analysis for Replay Strategies in Continual
  Learning
A Benchmark and Empirical Analysis for Replay Strategies in Continual Learning
Qihan Yang
Fan Feng
Rosa H. M. Chan
11
9
0
04 Aug 2022
Delving into Effective Gradient Matching for Dataset Condensation
Delving into Effective Gradient Matching for Dataset Condensation
Zixuan Jiang
Jiaqi Gu
Mingjie Liu
D. Pan
DD
20
41
0
30 Jul 2022
FedDM: Iterative Distribution Matching for Communication-Efficient
  Federated Learning
FedDM: Iterative Distribution Matching for Communication-Efficient Federated Learning
Yuanhao Xiong
Ruochen Wang
Minhao Cheng
Felix X. Yu
Cho-Jui Hsieh
FedML
DD
47
82
0
20 Jul 2022
Rank-based Decomposable Losses in Machine Learning: A Survey
Rank-based Decomposable Losses in Machine Learning: A Survey
Shu Hu
Xin Wang
Siwei Lyu
30
32
0
18 Jul 2022
How to Reuse and Compose Knowledge for a Lifetime of Tasks: A Survey on
  Continual Learning and Functional Composition
How to Reuse and Compose Knowledge for a Lifetime of Tasks: A Survey on Continual Learning and Functional Composition
Jorge Armando Mendez Mendez
Eric Eaton
KELM
CLL
29
27
0
15 Jul 2022
Memory Population in Continual Learning via Outlier Elimination
Memory Population in Continual Learning via Outlier Elimination
J. Hurtado
Alain Raymond-Sáez
Vladimir Araujo
Vincenzo Lomonaco
Alvaro Soto
D. Bacciu
25
9
0
04 Jul 2022
Active Exploration via Experiment Design in Markov Chains
Active Exploration via Experiment Design in Markov Chains
Mojmír Mutný
Tadeusz Janik
Andreas Krause
33
14
0
29 Jun 2022
Graph Condensation via Receptive Field Distribution Matching
Graph Condensation via Receptive Field Distribution Matching
Mengyang Liu
Shanchuan Li
Xinshi Chen
Le Song
DD
74
45
0
28 Jun 2022
Prioritized Training on Points that are Learnable, Worth Learning, and
  Not Yet Learnt
Prioritized Training on Points that are Learnable, Worth Learning, and Not Yet Learnt
Sören Mindermann
J. Brauner
Muhammed Razzak
Mrinank Sharma
Andreas Kirsch
...
Benedikt Höltgen
Aidan N. Gomez
Adrien Morisot
Sebastian Farquhar
Y. Gal
44
148
0
14 Jun 2022
Infinite Recommendation Networks: A Data-Centric Approach
Infinite Recommendation Networks: A Data-Centric Approach
Noveen Sachdeva
Mehak Preet Dhaliwal
Carole-Jean Wu
Julian McAuley
DD
31
28
0
03 Jun 2022
Previous
123
Next