Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.05013
Cited By
A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian Kernel, a Precise Phase Transition, and the Corresponding Double Descent
9 June 2020
Zhenyu Liao
Romain Couillet
Michael W. Mahoney
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian Kernel, a Precise Phase Transition, and the Corresponding Double Descent"
16 / 16 papers shown
Title
A Model Zoo on Phase Transitions in Neural Networks
Konstantin Schurholt
Léo Meynent
Yefan Zhou
Haiquan Lu
Yaoqing Yang
Damian Borth
68
0
0
25 Apr 2025
KITE: A Kernel-based Improved Transferability Estimation Method
Yunhui Guo
45
0
0
01 May 2024
The Universal Statistical Structure and Scaling Laws of Chaos and Turbulence
Noam Levi
Yaron Oz
AI4CE
26
1
0
02 Nov 2023
The Interpolating Information Criterion for Overparameterized Models
Liam Hodgkinson
Christopher van der Heide
Roberto Salomone
Fred Roosta
Michael W. Mahoney
20
7
0
15 Jul 2023
On The Relative Error of Random Fourier Features for Preserving Kernel Distance
Kuan Cheng
S. Jiang
Luojian Wei
Zhide Wei
36
1
0
01 Oct 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
34
121
0
03 May 2022
Generalized Reference Kernel for One-class Classification
Jenni Raitoharju
Alexandros Iosifidis
15
2
0
01 May 2022
Concentration of Random Feature Matrices in High-Dimensions
Zhijun Chen
Hayden Schaeffer
Rachel A. Ward
22
6
0
14 Apr 2022
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning
Yuege Xie
Bobby Shi
Hayden Schaeffer
Rachel A. Ward
78
9
0
07 Dec 2021
Model, sample, and epoch-wise descents: exact solution of gradient flow in the random feature model
A. Bodin
N. Macris
37
13
0
22 Oct 2021
Conditioning of Random Feature Matrices: Double Descent and Generalization Error
Zhijun Chen
Hayden Schaeffer
35
12
0
21 Oct 2021
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
29
71
0
06 Sep 2021
Towards an Understanding of Benign Overfitting in Neural Networks
Zhu Li
Zhi-Hua Zhou
A. Gretton
MLT
33
35
0
06 Jun 2021
Learning curves of generic features maps for realistic datasets with a teacher-student model
Bruno Loureiro
Cédric Gerbelot
Hugo Cui
Sebastian Goldt
Florent Krzakala
M. Mézard
Lenka Zdeborová
30
135
0
16 Feb 2021
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
36
172
0
23 Apr 2020
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
Charles H. Martin
Michael W. Mahoney
AI4CE
30
190
0
02 Oct 2018
1