ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.05468
  4. Cited By
Variational Auto-Regressive Gaussian Processes for Continual Learning
v1v2v3 (latest)

Variational Auto-Regressive Gaussian Processes for Continual Learning

9 June 2020
Sanyam Kapoor
Theofanis Karaletsos
T. Bui
    BDL
ArXiv (abs)PDFHTML

Papers citing "Variational Auto-Regressive Gaussian Processes for Continual Learning"

20 / 20 papers shown
Monte Carlo Functional Regularisation for Continual Learning
Monte Carlo Functional Regularisation for Continual Learning
Pengcheng Hao
Menghao Waiyan William Zhu
E. Kuruoglu
CLLBDL
142
0
0
18 Aug 2025
Likelihood approximations via Gaussian approximate inference
Likelihood approximations via Gaussian approximate inference
Thang D. Bui
178
1
0
28 Oct 2024
Low-Rank Filtering and Smoothing for Sequential Deep Learning
Low-Rank Filtering and Smoothing for Sequential Deep Learning
Joanna Sliwa
Frank Schneider
Nathanael Bosch
Agustinus Kristiadi
Philipp Hennig
BDLCLL
480
2
0
09 Oct 2024
Function-space Parameterization of Neural Networks for Sequential
  Learning
Function-space Parameterization of Neural Networks for Sequential Learning
Aidan Scannell
Riccardo Mereu
Paul E. Chang
Ella Tamir
Joni Pajarinen
Arno Solin
BDL
228
6
0
16 Mar 2024
Continual Learning via Sequential Function-Space Variational Inference
Continual Learning via Sequential Function-Space Variational Inference
Tim G. J. Rudner
Freddie Bickford-Smith
Qixuan Feng
Yee Whye Teh
Y. Gal
214
50
0
28 Dec 2023
Bayesian Transfer Learning
Bayesian Transfer Learning
Piotr M. Suder
Jason Xu
David B. Dunson
243
11
0
20 Dec 2023
Continual Learning From a Stream of APIs
Continual Learning From a Stream of APIsIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023
Enneng Yang
Zhenyi Wang
Li Shen
Nan Yin
Tongliang Liu
Guibing Guo
Xingwei Wang
Dacheng Tao
CLL
279
5
0
31 Aug 2023
A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual
  Learning
A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual LearningIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023
Zhenyi Wang
Enneng Yang
Li Shen
Heng-Chiao Huang
KELMMU
253
83
0
16 Jul 2023
Memory-Based Dual Gaussian Processes for Sequential Learning
Memory-Based Dual Gaussian Processes for Sequential LearningInternational Conference on Machine Learning (ICML), 2023
Paul E. Chang
Prakhar Verma
S. T. John
Arno Solin
Mohammad Emtiyaz Khan
GP
159
10
0
06 Jun 2023
Efficient Parametric Approximations of Neural Network Function Space
  Distance
Efficient Parametric Approximations of Neural Network Function Space DistanceInternational Conference on Machine Learning (ICML), 2023
Nikita Dhawan
Sicong Huang
Juhan Bae
Roger C. Grosse
286
5
0
07 Feb 2023
A Comprehensive Survey of Continual Learning: Theory, Method and
  Application
A Comprehensive Survey of Continual Learning: Theory, Method and ApplicationIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023
Liyuan Wang
Xingxing Zhang
Hang Su
Jun Zhu
KELMCLL
777
1,060
0
31 Jan 2023
Hierarchical Memory Pool Based Edge Semi-Supervised Continual Learning
  Method
Hierarchical Memory Pool Based Edge Semi-Supervised Continual Learning Method
Xiangwei Wang
Rui Han
Chi Harold Liu
CLL
144
0
0
17 Jan 2023
On Sequential Bayesian Inference for Continual Learning
On Sequential Bayesian Inference for Continual LearningEntropy (Entropy), 2023
Samuel Kessler
Adam D. Cobb
Tim G. J. Rudner
S. Zohren
Stephen J. Roberts
CLLBDL
341
11
0
04 Jan 2023
Black-box Coreset Variational Inference
Black-box Coreset Variational InferenceNeural Information Processing Systems (NeurIPS), 2022
Dionysis Manousakas
H. Ritter
Theofanis Karaletsos
BDL
238
4
0
04 Nov 2022
How to Reuse and Compose Knowledge for a Lifetime of Tasks: A Survey on
  Continual Learning and Functional Composition
How to Reuse and Compose Knowledge for a Lifetime of Tasks: A Survey on Continual Learning and Functional Composition
Jorge Armando Mendez Mendez
Eric Eaton
KELMCLL
281
35
0
15 Jul 2022
Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative
  Priors
Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative PriorsNeural Information Processing Systems (NeurIPS), 2022
Ravid Shwartz-Ziv
Micah Goldblum
Hossein Souri
Sanyam Kapoor
Chen Zhu
Yann LeCun
A. Wilson
UQCVBDL
158
46
0
20 May 2022
Generative Kernel Continual learning
Generative Kernel Continual learning
Mohammad Mahdi Derakhshani
Xiantong Zhen
Ling Shao
Cees G. M. Snoek
BDLVLM
100
0
0
26 Dec 2021
Conditioning Sparse Variational Gaussian Processes for Online
  Decision-making
Conditioning Sparse Variational Gaussian Processes for Online Decision-makingNeural Information Processing Systems (NeurIPS), 2021
Wesley J. Maddox
Samuel Stanton
A. Wilson
205
37
0
28 Oct 2021
Recent Advances of Continual Learning in Computer Vision: An Overview
Recent Advances of Continual Learning in Computer Vision: An OverviewIET Computer Vision (ICV), 2021
Haoxuan Qu
Hossein Rahmani
Kepeng Xu
Bryan M. Williams
Jun Liu
VLMCLL
486
98
0
23 Sep 2021
Continual Model-Based Reinforcement Learning with Hypernetworks
Continual Model-Based Reinforcement Learning with HypernetworksIEEE International Conference on Robotics and Automation (ICRA), 2020
Yizhou Huang
Kevin Xie
Homanga Bharadhwaj
Florian Shkurti
CLL
174
61
0
25 Sep 2020
1