Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.05620
Cited By
Exploring the Vulnerability of Deep Neural Networks: A Study of Parameter Corruption
10 June 2020
Xu Sun
Zhiyuan Zhang
Xuancheng Ren
Ruixuan Luo
Liangyou Li
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exploring the Vulnerability of Deep Neural Networks: A Study of Parameter Corruption"
7 / 7 papers shown
Title
Machine Unlearning Fails to Remove Data Poisoning Attacks
Martin Pawelczyk
Jimmy Z. Di
Yiwei Lu
Gautam Kamath
Ayush Sekhari
Seth Neel
AAML
MU
57
8
0
25 Jun 2024
Effective Gradient Sample Size via Variation Estimation for Accelerating Sharpness aware Minimization
Jiaxin Deng
Junbiao Pang
Baochang Zhang
Tian Wang
40
1
0
24 Feb 2024
Adversarial Parameter Defense by Multi-Step Risk Minimization
Zhiyuan Zhang
Ruixuan Luo
Xuancheng Ren
Qi Su
Liangyou Li
Xu Sun
AAML
23
6
0
07 Sep 2021
How to Inject Backdoors with Better Consistency: Logit Anchoring on Clean Data
Zhiyuan Zhang
Lingjuan Lyu
Weiqiang Wang
Lichao Sun
Xu Sun
21
35
0
03 Sep 2021
Sharpness-Aware Minimization for Efficiently Improving Generalization
Pierre Foret
Ariel Kleiner
H. Mobahi
Behnam Neyshabur
AAML
48
1,276
0
03 Oct 2020
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
281
2,889
0
15 Sep 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
284
5,835
0
08 Jul 2016
1