Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.06562
Cited By
Superconducting radio-frequency cavity fault classification using machine learning at Jefferson Laboratory
11 June 2020
C. Tennant
A. Carpenter
T. Powers
A. Solopova
Lasitha Vidyaratne
Khan M. Iftekharuddin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Superconducting radio-frequency cavity fault classification using machine learning at Jefferson Laboratory"
4 / 4 papers shown
Title
Anomaly Detection of Particle Orbit in Accelerator using LSTM Deep Learning Technology
Zhiyuan Chen
Wei Lu
Radhika Bhong
Yimin Hu
Brian Freeman
Adam Carpenter
9
1
0
28 Jan 2024
Uncertainty aware anomaly detection to predict errant beam pulses in the SNS accelerator
S. Javed
Pradeep Ramuhalli
Arif Mahmood
Yigit Yucesan
Alexander Zhukov
M. Schram
Kishansingh Rajput
Torri Jeske
6
15
0
22 Oct 2021
High-fidelity Prediction of Megapixel Longitudinal Phase-space Images of Electron Beams using Encoder-Decoder Neural Networks
Jun Zhu
Ye Chen
F. Brinker
W. Decking
S. Tomin
H. Schlarb
AI4CE
17
25
0
25 Jan 2021
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,134
0
06 Jun 2015
1