ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.06562
  4. Cited By
Superconducting radio-frequency cavity fault classification using
  machine learning at Jefferson Laboratory

Superconducting radio-frequency cavity fault classification using machine learning at Jefferson Laboratory

11 June 2020
C. Tennant
A. Carpenter
T. Powers
A. Solopova
Lasitha Vidyaratne
Khan M. Iftekharuddin
ArXivPDFHTML

Papers citing "Superconducting radio-frequency cavity fault classification using machine learning at Jefferson Laboratory"

4 / 4 papers shown
Title
Anomaly Detection of Particle Orbit in Accelerator using LSTM Deep
  Learning Technology
Anomaly Detection of Particle Orbit in Accelerator using LSTM Deep Learning Technology
Zhiyuan Chen
Wei Lu
Radhika Bhong
Yimin Hu
Brian Freeman
Adam Carpenter
9
1
0
28 Jan 2024
Uncertainty aware anomaly detection to predict errant beam pulses in the
  SNS accelerator
Uncertainty aware anomaly detection to predict errant beam pulses in the SNS accelerator
S. Javed
Pradeep Ramuhalli
Arif Mahmood
Yigit Yucesan
Alexander Zhukov
M. Schram
Kishansingh Rajput
Torri Jeske
6
15
0
22 Oct 2021
High-fidelity Prediction of Megapixel Longitudinal Phase-space Images of
  Electron Beams using Encoder-Decoder Neural Networks
High-fidelity Prediction of Megapixel Longitudinal Phase-space Images of Electron Beams using Encoder-Decoder Neural Networks
Jun Zhu
Ye Chen
F. Brinker
W. Decking
S. Tomin
H. Schlarb
AI4CE
17
25
0
25 Jan 2021
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,134
0
06 Jun 2015
1