Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.06979
Cited By
v1
v2
v3 (latest)
Non-Negative Bregman Divergence Minimization for Deep Direct Density Ratio Estimation
12 June 2020
Masahiro Kato
Takeshi Teshima
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Non-Negative Bregman Divergence Minimization for Deep Direct Density Ratio Estimation"
24 / 24 papers shown
Title
Projection Pursuit Density Ratio Estimation
Meilin Wang
Wei Huang
Mingming Gong
Zheng Zhang
40
0
0
01 Jun 2025
Direct Density Ratio Optimization: A Statistically Consistent Approach to Aligning Large Language Models
Rei Higuchi
Taiji Suzuki
119
1
0
12 May 2025
Binary Losses for Density Ratio Estimation
Werner Zellinger
138
0
0
28 Jan 2025
Bounds on Lp errors in density ratio estimation via f-divergence loss functions
Yoshiaki Kitazawa
101
1
0
02 Oct 2024
Meta-learning for Positive-unlabeled Classification
Atsutoshi Kumagai
Tomoharu Iwata
Yasuhiro Fujiwara
71
1
0
06 Jun 2024
Overcoming Saturation in Density Ratio Estimation by Iterated Regularization
Lukas Gruber
Markus Holzleitner
Johannes Lehner
Sepp Hochreiter
Werner Zellinger
117
2
0
21 Feb 2024
Towards a Unified Analysis of Kernel-based Methods Under Covariate Shift
Xingdong Feng
Xin He
Caixing Wang
Chao Wang
Jingnan Zhang
69
7
0
12 Oct 2023
Federated Learning under Covariate Shifts with Generalization Guarantees
Ali Ramezani-Kebrya
Fanghui Liu
Thomas Pethick
Grigorios G. Chrysos
Volkan Cevher
FedML
OOD
99
8
0
08 Jun 2023
Computing high-dimensional optimal transport by flow neural networks
Chen Xu
Xiuyuan Cheng
Yao Xie
OT
171
5
0
19 May 2023
Utility Theory of Synthetic Data Generation
Shi Xu
W. Sun
Guang Cheng
174
5
0
17 May 2023
Estimating the Density Ratio between Distributions with High Discrepancy using Multinomial Logistic Regression
Akash Srivastava
Seung-Jun Han
Kai Xu
Benjamin Rhodes
Michael U. Gutmann
108
11
0
01 May 2023
Automatic Debiased Learning from Positive, Unlabeled, and Exposure Data
Masahiro Kato
Shuting Wu
Kodai Kureishi
Shota Yasui
20
1
0
08 Mar 2023
Adapting to Continuous Covariate Shift via Online Density Ratio Estimation
Yu Zhang
Zhenyu Zhang
Peng Zhao
Masashi Sugiyama
OOD
83
13
0
06 Feb 2023
Refining Generative Process with Discriminator Guidance in Score-based Diffusion Models
Dongjun Kim
Yeongmin Kim
Se Jung Kwon
Wanmo Kang
Il-Chul Moon
DiffM
120
89
0
28 Nov 2022
Generalized Balancing Weights via Deep Neural Networks
Yoshiaki Kitazawa
BDL
CML
64
1
0
14 Nov 2022
Approximate Data Deletion in Generative Models
Zhifeng Kong
Scott Alfeld
MU
49
4
0
29 Jun 2022
Unified Perspective on Probability Divergence via Maximum Likelihood Density Ratio Estimation: Bridging KL-Divergence and Integral Probability Metrics
Masahiro Kato
Masaaki Imaizumi
Kentaro Minami
66
0
0
31 Jan 2022
A Unified Framework for Multi-distribution Density Ratio Estimation
Lantao Yu
Yujia Jin
Stefano Ermon
42
4
0
07 Dec 2021
Deep Bregman Divergence for Contrastive Learning of Visual Representations
Mina Rezaei
Farzin Soleymani
B. Bischl
Shekoofeh Azizi
SSL
80
16
0
15 Sep 2021
Estimation of Local Average Treatment Effect by Data Combination
Kazuhiko Shinoda
T. Hoshino
33
1
0
11 Sep 2021
Learning Causal Models from Conditional Moment Restrictions by Importance Weighting
Masahiro Kato
Masaaki Imaizumi
K. McAlinn
Haruo Kakehi
Shota Yasui
CML
73
5
0
03 Aug 2021
Positive-Unlabeled Classification under Class-Prior Shift: A Prior-invariant Approach Based on Density Ratio Estimation
Shōta Nakajima
Masashi Sugiyama
149
9
0
11 Jul 2021
Meta-Learning for Relative Density-Ratio Estimation
Atsutoshi Kumagai
Tomoharu Iwata
Yasuhiro Fujiwara
136
10
0
02 Jul 2021
Learning Classifiers under Delayed Feedback with a Time Window Assumption
Masahiro Kato
Shota Yasui
52
6
0
28 Sep 2020
1