Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2006.07490
Cited By
Understanding Unintended Memorization in Federated Learning
12 June 2020
Om Thakkar
Swaroop Indra Ramaswamy
Rajiv Mathews
Franccoise Beaufays
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Understanding Unintended Memorization in Federated Learning"
50 / 59 papers shown
Title
Efficiently Attacking Memorization Scores
Tue Do
Varun Chandrasekaran
Daniel Alabi
TDI
AAML
242
0
0
24 Sep 2025
Fairness in Federated Learning: Fairness for Whom?
Afaf Taik
Khaoula Chehbouni
G. Farnadi
FedML
185
1
0
27 May 2025
FedSEA-LLaMA: A Secure, Efficient and Adaptive Federated Splitting Framework for Large Language Models
Zishuai Zhang
Hainan Zhang
JiaYing Zheng
Ziwei Wang
Jin Dong
Yongxin Tong
Zhiming Zheng
FedML
368
0
0
21 May 2025
Uncovering Latent Memories: Assessing Data Leakage and Memorization Patterns in Frontier AI Models
Sunny Duan
Mikail Khona
Abhiram Iyer
Rylan Schaeffer
Ila R Fiete
354
5
0
20 Jun 2024
Memorization in deep learning: A survey
Jiaheng Wei
Yanjun Zhang
Leo Yu Zhang
Ming Ding
Chao Chen
Kok-Leong Ong
Jun Zhang
Yang Xiang
273
15
0
06 Jun 2024
Quantifying Contamination in Evaluating Code Generation Capabilities of Language Models
Martin Riddell
Ansong Ni
Arman Cohan
ELM
182
45
0
06 Mar 2024
Copyright Traps for Large Language Models
Matthieu Meeus
Igor Shilov
Manuel Faysse
Yves-Alexandre de Montjoye
323
37
0
14 Feb 2024
Do Localization Methods Actually Localize Memorized Data in LLMs? A Tale of Two Benchmarks
North American Chapter of the Association for Computational Linguistics (NAACL), 2023
Ting-Yun Chang
Jesse Thomason
Robin Jia
263
24
0
15 Nov 2023
SoK: Memorisation in machine learning
Dmitrii Usynin
Moritz Knolle
Georgios Kaissis
285
1
0
06 Nov 2023
Gradient-Free Privacy Leakage in Federated Language Models through Selective Weight Tampering
Md Rafi Ur Rashid
Vishnu Asutosh Dasu
Kang Gu
Najrin Sultana
Shagufta Mehnaz
AAML
FedML
476
14
0
24 Oct 2023
MoPe: Model Perturbation-based Privacy Attacks on Language Models
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2023
Marvin Li
Jason Wang
Jeffrey G. Wang
Seth Neel
AAML
235
26
0
22 Oct 2023
Identifying and Mitigating Privacy Risks Stemming from Language Models: A Survey
Victoria Smith
Ali Shahin Shamsabadi
Carolyn Ashurst
Adrian Weller
PILM
416
41
0
27 Sep 2023
A Note On Interpreting Canary Exposure
Matthew Jagielski
219
5
0
31 May 2023
Quantifying Overfitting: Evaluating Neural Network Performance through Analysis of Null Space
Hossein Rezaei
Mohammad Sabokrou
182
5
0
30 May 2023
PreCog: Exploring the Relation between Memorization and Performance in Pre-trained Language Models
Recent Advances in Natural Language Processing (RANLP), 2023
Leonardo Ranaldi
Elena Sofia Ruzzetti
Fabio Massimo Zanzotto
146
7
0
08 May 2023
Memorization of Named Entities in Fine-tuned BERT Models
International Cross-Domain Conference on Machine Learning and Knowledge Extraction (CD-MAKE), 2022
Andor Diera
N. Lell
Aygul Garifullina
A. Scherp
167
2
0
07 Dec 2022
CANIFE: Crafting Canaries for Empirical Privacy Measurement in Federated Learning
International Conference on Learning Representations (ICLR), 2022
Samuel Maddock
Alexandre Sablayrolles
Pierre Stock
FedML
285
28
0
06 Oct 2022
Recitation-Augmented Language Models
International Conference on Learning Representations (ICLR), 2022
Zhiqing Sun
Xuezhi Wang
Yi Tay
Yiming Yang
Denny Zhou
RALM
665
76
0
04 Oct 2022
Measuring Forgetting of Memorized Training Examples
International Conference on Learning Representations (ICLR), 2022
Matthew Jagielski
Om Thakkar
Florian Tramèr
Daphne Ippolito
Katherine Lee
...
Eric Wallace
Shuang Song
Abhradeep Thakurta
Nicolas Papernot
Chiyuan Zhang
TDI
356
132
0
30 Jun 2022
Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models
Neural Information Processing Systems (NeurIPS), 2022
Kushal Tirumala
Aram H. Markosyan
Luke Zettlemoyer
Armen Aghajanyan
TDI
319
237
0
22 May 2022
Recovering Private Text in Federated Learning of Language Models
Neural Information Processing Systems (NeurIPS), 2022
Samyak Gupta
Yangsibo Huang
Zexuan Zhong
Tianyu Gao
Kai Li
Danqi Chen
FedML
251
94
0
17 May 2022
Detecting Unintended Memorization in Language-Model-Fused ASR
Interspeech (Interspeech), 2022
Wenjie Huang
Steve Chien
Om Thakkar
Rajiv Mathews
168
11
0
20 Apr 2022
Extracting Targeted Training Data from ASR Models, and How to Mitigate It
Interspeech (Interspeech), 2022
Ehsan Amid
Om Thakkar
A. Narayanan
Rajiv Mathews
Franccoise Beaufays
174
11
0
18 Apr 2022
Quantifying Memorization Across Neural Language Models
International Conference on Learning Representations (ICLR), 2022
Nicholas Carlini
Daphne Ippolito
Matthew Jagielski
Katherine Lee
Florian Tramèr
Chiyuan Zhang
PILM
476
760
0
15 Feb 2022
Towards Multi-Objective Statistically Fair Federated Learning
Ninareh Mehrabi
Cyprien de Lichy
John McKay
C. He
William Campbell
FedML
144
12
0
24 Jan 2022
Counterfactual Memorization in Neural Language Models
Neural Information Processing Systems (NeurIPS), 2021
Chiyuan Zhang
Daphne Ippolito
Katherine Lee
Matthew Jagielski
Florian Tramèr
Nicholas Carlini
279
167
0
24 Dec 2021
DP-REC: Private & Communication-Efficient Federated Learning
Aleksei Triastcyn
M. Reisser
Christos Louizos
FedML
153
18
0
09 Nov 2021
Federated Learning Meets Natural Language Processing: A Survey
Ming Liu
Stella Ho
Mengqi Wang
Longxiang Gao
Yuan Jin
Heng Zhang
FedML
142
82
0
27 Jul 2021
Private Alternating Least Squares: Practical Private Matrix Completion with Tighter Rates
International Conference on Machine Learning (ICML), 2021
Steve Chien
Prateek Jain
Walid Krichene
Steffen Rendle
Shuang Song
Abhradeep Thakurta
Li Zhang
139
19
0
20 Jul 2021
A Method to Reveal Speaker Identity in Distributed ASR Training, and How to Counter It
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2021
Trung D. Q. Dang
Om Thakkar
Swaroop Indra Ramaswamy
Rajiv Mathews
Peter Chin
Franccoise Beaufays
FedML
83
10
0
15 Apr 2021
Extracting Training Data from Large Language Models
USENIX Security Symposium (USENIX Security), 2020
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
Basel Alomair
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
1.1K
2,436
0
14 Dec 2020
Training Production Language Models without Memorizing User Data
Swaroop Indra Ramaswamy
Om Thakkar
Rajiv Mathews
Galen Andrew
H. B. McMahan
Franccoise Beaufays
FedML
233
95
0
21 Sep 2020
Mime: Mimicking Centralized Stochastic Algorithms in Federated Learning
Sai Praneeth Karimireddy
Martin Jaggi
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
522
232
0
08 Aug 2020
LinkedIn's Audience Engagements API: A Privacy Preserving Data Analytics System at Scale
Journal of Privacy and Confidentiality (JPC), 2020
Ryan M. Rogers
S. Subramaniam
Sean Peng
D. Durfee
Seunghyun Lee
Santosh Kumar Kancha
Shraddha Sahay
P. Ahammad
163
89
0
14 Feb 2020
Encode, Shuffle, Analyze Privacy Revisited: Formalizations and Empirical Evaluation
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Shuang Song
Kunal Talwar
Abhradeep Thakurta
213
88
0
10 Jan 2020
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
531
7,405
0
10 Dec 2019
Generative Models for Effective ML on Private, Decentralized Datasets
International Conference on Learning Representations (ICLR), 2019
S. Augenstein
H. B. McMahan
Daniel Ramage
Swaroop Indra Ramaswamy
Peter Kairouz
Mingqing Chen
Rajiv Mathews
Blaise Agüera y Arcas
SyDa
270
204
0
15 Nov 2019
SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
Sai Praneeth Karimireddy
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
307
383
0
14 Oct 2019
Federated Learning of N-gram Language Models
Conference on Computational Natural Language Learning (CoNLL), 2019
Mingqing Chen
A. Suresh
Rajiv Mathews
Adeline Wong
Cyril Allauzen
F. Beaufays
Michael Riley
FedML
191
78
0
08 Oct 2019
Federated Learning for Emoji Prediction in a Mobile Keyboard
Swaroop Indra Ramaswamy
Rajiv Mathews
Kanishka Rao
Franccoise Beaufays
FedML
217
325
0
11 Jun 2019
Gmail Smart Compose: Real-Time Assisted Writing
Knowledge Discovery and Data Mining (KDD), 2019
Mengzhao Chen
Benjamin Lee
G. Bansal
Yuan Cao
Shuyuan Zhang
...
Yinan Wang
Andrew M. Dai
Zhiwen Chen
Timothy Sohn
Yonghui Wu
210
224
0
17 May 2019
Differentially Private Learning with Adaptive Clipping
Neural Information Processing Systems (NeurIPS), 2019
Galen Andrew
Om Thakkar
H. B. McMahan
Swaroop Ramaswamy
FedML
424
389
0
09 May 2019
Towards Federated Learning at Scale: System Design
Keith Bonawitz
Hubert Eichner
W. Grieskamp
Dzmitry Huba
A. Ingerman
...
H. B. McMahan
Timon Van Overveldt
David Petrou
Daniel Ramage
Jason Roselander
FedML
420
2,937
0
04 Feb 2019
Federated Learning for Mobile Keyboard Prediction
Andrew Straiton Hard
Kanishka Rao
Zhifeng Lin
Swaroop Indra Ramaswamy
Youjie Li
S. Augenstein
Alex Schwing
M. Annavaram
A. Avestimehr
FedML
556
1,693
0
08 Nov 2018
Subsampled Rényi Differential Privacy and Analytical Moments Accountant
Yu Wang
Borja Balle
S. Kasiviswanathan
376
437
0
31 Jul 2018
Exploiting Unintended Feature Leakage in Collaborative Learning
Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
FedML
457
1,632
0
10 May 2018
Differentially Private Matrix Completion Revisited
International Conference on Machine Learning (ICML), 2017
Prateek Jain
Om Thakkar
Abhradeep Thakurta
FedML
200
34
0
28 Dec 2017
Collecting Telemetry Data Privately
Bolin Ding
Janardhan Kulkarni
Sergey Yekhanin
279
755
0
05 Dec 2017
Learning Differentially Private Recurrent Language Models
H. B. McMahan
Daniel Ramage
Kunal Talwar
Li Zhang
FedML
239
128
0
18 Oct 2017
Prochlo: Strong Privacy for Analytics in the Crowd
Andrea Bittau
Ulfar Erlingsson
Petros Maniatis
Ilya Mironov
A. Raghunathan
David Lie
Mitch Rudominer
Ushasree Kode
J. Tinnés
B. Seefeld
280
287
0
02 Oct 2017
1
2
Next