Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.09252
Cited By
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
16 June 2020
Giorgos Bouritsas
Fabrizio Frasca
S. Zafeiriou
M. Bronstein
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting"
13 / 63 papers shown
Title
Size-Invariant Graph Representations for Graph Classification Extrapolations
Beatrice Bevilacqua
Yangze Zhou
Bruno Ribeiro
OOD
31
108
0
08 Mar 2021
Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks
Cristian Bodnar
Fabrizio Frasca
Yu Guang Wang
N. Otter
Guido Montúfar
Pietro Lió
M. Bronstein
25
244
0
04 Mar 2021
Autobahn: Automorphism-based Graph Neural Nets
Erik H. Thiede
Wenda Zhou
Risi Kondor
GNN
AI4CE
16
48
0
02 Mar 2021
Topological Graph Neural Networks
Max Horn
E. Brouwer
Michael Moor
Yves Moreau
Bastian Alexander Rieck
Karsten M. Borgwardt
AI4CE
22
87
0
15 Feb 2021
Graph Homomorphism Convolution
Hoang NT
Takanori Maehara
72
39
0
03 May 2020
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
P. D. Haan
Maurice Weiler
Taco S. Cohen
Max Welling
89
127
0
11 Mar 2020
A Survey on The Expressive Power of Graph Neural Networks
Ryoma Sato
170
170
0
09 Mar 2020
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
186
913
0
02 Mar 2020
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks
Minjie Wang
Da Zheng
Zihao Ye
Quan Gan
Mufei Li
...
J. Zhao
Haotong Zhang
Alex Smola
Jinyang Li
Zheng-Wei Zhang
AI4CE
GNN
189
743
0
03 Sep 2019
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
229
1,935
0
09 Jun 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
219
1,332
0
12 Feb 2018
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
258
1,398
0
01 Dec 2016
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,809
0
25 Nov 2016
Previous
1
2