Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.09252
Cited By
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
16 June 2020
Giorgos Bouritsas
Fabrizio Frasca
S. Zafeiriou
M. Bronstein
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting"
50 / 59 papers shown
Title
A graph neural network-based model with Out-of-Distribution Robustness for enhancing Antiretroviral Therapy Outcome Prediction for HIV-1
Giulia Di Teodoro
F. Siciliano
V. Guarrasi
A. Vandamme
Valeria Ghisetti
Anders Sönnerborg
Maurizio Zazzi
Fabrizio Silvestri
L. Palagi
64
8
0
24 Feb 2025
Towards Invariance to Node Identifiers in Graph Neural Networks
Maya Bechler-Speicher
Moshe Eliasof
Carola-Bibiane Schönlieb
Ran Gilad-Bachrach
Amir Globerson
51
1
0
20 Feb 2025
Recent Advances in Malware Detection: Graph Learning and Explainability
Hossein Shokouhinejad
Roozbeh Razavi-Far
Hesamodin Mohammadian
Mahdi Rabbani
Samuel Ansong
Griffin Higgins
Ali Ghorbani
AAML
68
2
0
14 Feb 2025
Graph Triple Attention Network: A Decoupled Perspective
Xiaotang Wang
Yun Zhu
Haizhou Shi
Yongchao Liu
Chuntao Hong
60
2
0
03 Jan 2025
Towards Graph Foundation Models: A Study on the Generalization of Positional and Structural Encodings
Billy Joe Franks
Moshe Eliasof
Semih Cantürk
Guy Wolf
Carola-Bibiane Schönlieb
Sophie Fellenz
Marius Kloft
AI4CE
71
0
0
10 Dec 2024
Theoretical Insights into Line Graph Transformation on Graph Learning
Fan Yang
Xingyue Huang
27
0
0
21 Oct 2024
Finding path and cycle counting formulae in graphs with Deep Reinforcement Learning
Jason Piquenot
Maxime Bérar
Pierre Héroux
Jean-Yves Ramel
R. Raveaux
Sébastien Adam
16
0
0
02 Oct 2024
Simplifying complex machine learning by linearly separable network embedding spaces
Alexandros Xenos
N. Malod-Dognin
Natasa Przulj
20
0
0
02 Oct 2024
Discrete Randomized Smoothing Meets Quantum Computing
Md. Nazmus Sakib
Aman Saxena
Nicola Franco
Md Mashrur Arifin
Stephan Günnemann
AAML
27
1
0
01 Aug 2024
MAGE: Model-Level Graph Neural Networks Explanations via Motif-based Graph Generation
Zhaoning Yu
Hongyang Gao
37
3
0
21 May 2024
Graph as Point Set
Xiyuan Wang
Pan Li
Muhan Zhang
GNN
3DPC
PINN
35
4
0
05 May 2024
On the Theoretical Expressive Power and the Design Space of Higher-Order Graph Transformers
Cai Zhou
Rose Yu
Yusu Wang
27
7
0
04 Apr 2024
Contextualized Messages Boost Graph Representations
Brian Godwin Lim
Galvin Brice Lim
Renzo Roel Tan
Kazushi Ikeda
AI4CE
62
1
0
19 Mar 2024
Descriptive Kernel Convolution Network with Improved Random Walk Kernel
Meng-Chieh Lee
Lingxiao Zhao
L. Akoglu
16
3
0
08 Feb 2024
Supercharging Graph Transformers with Advective Diffusion
Qitian Wu
Chenxiao Yang
Kaipeng Zeng
Fan Nie
AI4CE
40
6
0
10 Oct 2023
Uncovering Neural Scaling Laws in Molecular Representation Learning
Dingshuo Chen
Yanqiao Zhu
Jieyu Zhang
Yuanqi Du
Zhixun Li
Qiang Liu
Shu Wu
Liang Wang
21
15
0
15 Sep 2023
The Expressive Power of Graph Neural Networks: A Survey
Bingxue Zhang
Changjun Fan
Shixuan Liu
Kuihua Huang
Xiang Zhao
Jin-Yu Huang
Zhong Liu
40
19
0
16 Aug 2023
QDC: Quantum Diffusion Convolution Kernels on Graphs
Thomas Markovich
GNN
10
3
0
20 Jul 2023
Weisfeiler and Leman Go Measurement Modeling: Probing the Validity of the WL Test
Arjun Subramonian
Adina Williams
Maximilian Nickel
Yizhou Sun
Levent Sagun
16
0
0
11 Jul 2023
Expectation-Complete Graph Representations with Homomorphisms
Pascal Welke
Maximilian Thiessen
Fabian Jogl
Thomas Gärtner
13
5
0
09 Jun 2023
Graph Inductive Biases in Transformers without Message Passing
Liheng Ma
Chen Lin
Derek Lim
Adriana Romero Soriano
P. Dokania
Mark J. Coates
Philip H. S. Torr
Ser-Nam Lim
AI4CE
12
86
0
27 May 2023
From Relational Pooling to Subgraph GNNs: A Universal Framework for More Expressive Graph Neural Networks
Cai Zhou
Xiyuan Wang
Muhan Zhang
21
14
0
08 May 2023
A Comprehensive Survey on Deep Graph Representation Learning
Wei Ju
Zheng Fang
Yiyang Gu
Zequn Liu
Qingqing Long
...
Jingyang Yuan
Yusheng Zhao
Yifan Wang
Xiao Luo
Ming Zhang
GNN
AI4TS
25
139
0
11 Apr 2023
SUREL+: Moving from Walks to Sets for Scalable Subgraph-based Graph Representation Learning
Haoteng Yin
Muhan Zhang
Jianguo Wang
Pan Li
61
8
0
06 Mar 2023
Graph Positional Encoding via Random Feature Propagation
Moshe Eliasof
Fabrizio Frasca
Beatrice Bevilacqua
Eran Treister
Gal Chechik
Haggai Maron
14
16
0
06 Mar 2023
Technical report: Graph Neural Networks go Grammatical
Jason Piquenot
Aldo Moscatelli
Maxime Bérar
Pierre Héroux
R. Raveaux
Jean-Yves Ramel
Sébastien Adam
17
0
0
02 Mar 2023
Ordered GNN: Ordering Message Passing to Deal with Heterophily and Over-smoothing
Yunchong Song
Cheng Zhou
Xinbing Wang
Zhouhan Lin
16
61
0
03 Feb 2023
Continual Graph Learning: A Survey
Qiao Yuan
S. Guan
Pin Ni
Tianlun Luo
Ka Lok Man
Prudence W. H. Wong
Victor I. Chang
CLL
24
14
0
28 Jan 2023
Graph Scattering beyond Wavelet Shackles
Christian Koke
Gitta Kutyniok
14
3
0
26 Jan 2023
A Generalization of ViT/MLP-Mixer to Graphs
Xiaoxin He
Bryan Hooi
T. Laurent
Adam Perold
Yann LeCun
Xavier Bresson
22
88
0
27 Dec 2022
TIDE: Time Derivative Diffusion for Deep Learning on Graphs
M. Behmanesh
Maximilian Krahn
M. Ovsjanikov
DiffM
GNN
16
9
0
05 Dec 2022
GrannGAN: Graph annotation generative adversarial networks
Yoann Boget
Magda Gregorova
Alexandros Kalousis
GAN
10
0
0
01 Dec 2022
On the Ability of Graph Neural Networks to Model Interactions Between Vertices
Noam Razin
Tom Verbin
Nadav Cohen
19
10
0
29 Nov 2022
Beyond 1-WL with Local Ego-Network Encodings
Nurudin Alvarez-Gonzalez
Andreas Kaltenbrunner
Vicencc Gómez
23
5
0
27 Nov 2022
Exponentially Improving the Complexity of Simulating the Weisfeiler-Lehman Test with Graph Neural Networks
Anders Aamand
Justin Y. Chen
Piotr Indyk
Shyam Narayanan
R. Rubinfeld
Nicholas Schiefer
Sandeep Silwal
Tal Wagner
32
21
0
06 Nov 2022
Boosting the Cycle Counting Power of Graph Neural Networks with I
2
^2
2
-GNNs
Yinan Huang
Xingang Peng
Jianzhu Ma
Muhan Zhang
76
46
0
22 Oct 2022
Expander Graph Propagation
Andreea Deac
Marc Lackenby
Petar Velivcković
96
51
0
06 Oct 2022
Provably expressive temporal graph networks
Amauri Souza
Diego Mesquita
Samuel Kaski
Vikas K. Garg
87
54
0
29 Sep 2022
Recipe for a General, Powerful, Scalable Graph Transformer
Ladislav Rampášek
Mikhail Galkin
Vijay Prakash Dwivedi
A. Luu
Guy Wolf
Dominique Beaini
43
507
0
25 May 2022
Expressiveness and Approximation Properties of Graph Neural Networks
Floris Geerts
Juan L. Reutter
13
64
0
10 Apr 2022
SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators
Karolis Martinkus
Andreas Loukas
Nathanael Perraudin
Roger Wattenhofer
25
66
0
04 Apr 2022
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
Christopher Morris
Gaurav Rattan
Sandra Kiefer
Siamak Ravanbakhsh
33
39
0
25 Mar 2022
A Theoretical Comparison of Graph Neural Network Extensions
Pál András Papp
Roger Wattenhofer
95
45
0
30 Jan 2022
Equivariant Subgraph Aggregation Networks
Beatrice Bevilacqua
Fabrizio Frasca
Derek Lim
Balasubramaniam Srinivasan
Chen Cai
G. Balamurugan
M. Bronstein
Haggai Maron
22
174
0
06 Oct 2021
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
122
78
0
01 Oct 2021
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
19
130
0
11 Jun 2021
Size-Invariant Graph Representations for Graph Classification Extrapolations
Beatrice Bevilacqua
Yangze Zhou
Bruno Ribeiro
OOD
31
108
0
08 Mar 2021
Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks
Cristian Bodnar
Fabrizio Frasca
Yu Guang Wang
N. Otter
Guido Montúfar
Pietro Lió
M. Bronstein
25
244
0
04 Mar 2021
Autobahn: Automorphism-based Graph Neural Nets
Erik H. Thiede
Wenda Zhou
Risi Kondor
GNN
AI4CE
16
48
0
02 Mar 2021
Topological Graph Neural Networks
Max Horn
E. Brouwer
Michael Moor
Yves Moreau
Bastian Alexander Rieck
Karsten M. Borgwardt
AI4CE
22
87
0
15 Feb 2021
1
2
Next