ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.10160
  4. Cited By
Matérn Gaussian processes on Riemannian manifolds

Matérn Gaussian processes on Riemannian manifolds

17 June 2020
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
ArXivPDFHTML

Papers citing "Matérn Gaussian processes on Riemannian manifolds"

30 / 30 papers shown
Title
Geometry-aware Active Learning of Spatiotemporal Dynamic Systems
Geometry-aware Active Learning of Spatiotemporal Dynamic Systems
Xizhuo
Zhang
AI4CE
29
0
0
26 Apr 2025
Residual Deep Gaussian Processes on Manifolds
Residual Deep Gaussian Processes on Manifolds
Kacper Wyrwal
Andreas Krause
Viacheslav Borovitskiy
BDL
49
0
0
31 Oct 2024
On Probabilistic Pullback Metrics for Latent Hyperbolic Manifolds
On Probabilistic Pullback Metrics for Latent Hyperbolic Manifolds
Luis Augenstein
Noémie Jaquier
Tamim Asfour
Leonel Rozo
26
0
0
28 Oct 2024
Bayesian Optimal Experimental Design for Robot Kinematic Calibration
Bayesian Optimal Experimental Design for Robot Kinematic Calibration
Ersin Daş
Thomas Touma
J. W. Burdick
32
0
0
17 Sep 2024
A survey and benchmark of high-dimensional Bayesian optimization of
  discrete sequences
A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences
Miguel González Duque
Richard Michael
Simon Bartels
Yevgen Zainchkovskyy
Søren Hauberg
Wouter Boomsma
44
4
0
07 Jun 2024
Smoothness Estimation for Whittle-Matérn Processes on Closed
  Riemannian Manifolds
Smoothness Estimation for Whittle-Matérn Processes on Closed Riemannian Manifolds
Moritz Korte-Stapff
Toni Karvonen
Eric Moulines
29
0
0
31 Dec 2023
Non-parametric regression for robot learning on manifolds
Non-parametric regression for robot learning on manifolds
P. C. López-Custodio
K. Bharath
A. Kucukyilmaz
S. P. Preston
25
1
0
30 Oct 2023
Implicit Manifold Gaussian Process Regression
Implicit Manifold Gaussian Process Regression
Bernardo Fichera
Viacheslav Borovitskiy
Andreas Krause
A. Billard
18
3
0
30 Oct 2023
Posterior Contraction Rates for Matérn Gaussian Processes on
  Riemannian Manifolds
Posterior Contraction Rates for Matérn Gaussian Processes on Riemannian Manifolds
Paul Rosa
Viacheslav Borovitskiy
Alexander Terenin
Judith Rousseau
30
7
0
19 Sep 2023
Actually Sparse Variational Gaussian Processes
Actually Sparse Variational Gaussian Processes
Harry Jake Cunningham
Daniel Augusto R. M. A. de Souza
So Takao
Mark van der Wilk
M. Deisenroth
29
5
0
11 Apr 2023
Gaussian kernels on non-simply-connected closed Riemannian manifolds are
  never positive definite
Gaussian kernels on non-simply-connected closed Riemannian manifolds are never positive definite
Siran Li
18
3
0
12 Mar 2023
A Survey of Geometric Optimization for Deep Learning: From Euclidean
  Space to Riemannian Manifold
A Survey of Geometric Optimization for Deep Learning: From Euclidean Space to Riemannian Manifold
Yanhong Fei
Xian Wei
Yingjie Liu
Zhengyu Li
Mingsong Chen
28
6
0
16 Feb 2023
Intrinsic Gaussian Process on Unknown Manifolds with Probabilistic
  Metrics
Intrinsic Gaussian Process on Unknown Manifolds with Probabilistic Metrics
Mu Niu
Zhenwen Dai
P. Cheung
Yizhu Wang
21
5
0
16 Jan 2023
Extrinsic Bayesian Optimizations on Manifolds
Extrinsic Bayesian Optimizations on Manifolds
Yi-Zheng Fang
Mu Niu
P. Cheung
Lizhen Lin
28
1
0
21 Dec 2022
Transductive Kernels for Gaussian Processes on Graphs
Transductive Kernels for Gaussian Processes on Graphs
Yin-Cong Zhi
Felix L. Opolka
Yin Cheng Ng
Pietro Lio
Xiaowen Dong
19
0
0
28 Nov 2022
Isotropic Gaussian Processes on Finite Spaces of Graphs
Isotropic Gaussian Processes on Finite Spaces of Graphs
Viacheslav Borovitskiy
Mohammad Reza Karimi
Vignesh Ram Somnath
Andreas Krause
35
7
0
03 Nov 2022
Stationary Kernels and Gaussian Processes on Lie Groups and their
  Homogeneous Spaces I: the compact case
Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces I: the compact case
I. Azangulov
A. Smolensky
Alexander Terenin
Viacheslav Borovitskiy
39
21
0
31 Aug 2022
Recent Advances in Bayesian Optimization
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
38
199
0
07 Jun 2022
Adjoint-aided inference of Gaussian process driven differential
  equations
Adjoint-aided inference of Gaussian process driven differential equations
Paterne Gahungu
Christopher W. Lanyon
Mauricio A. Alvarez
Engineer Bainomugisha
M. Smith
Richard D. Wilkinson
26
5
0
09 Feb 2022
Fast characterization of inducible regions of atrial fibrillation models
  with multi-fidelity Gaussian process classification
Fast characterization of inducible regions of atrial fibrillation models with multi-fidelity Gaussian process classification
Lia Gander
Simone Pezzuto
A. Gharaviri
Rolf Krause
P. Perdikaris
F. Sahli Costabal
13
13
0
15 Dec 2021
Non-separable Spatio-temporal Graph Kernels via SPDEs
Non-separable Spatio-temporal Graph Kernels via SPDEs
A. Nikitin
S. T. John
Arno Solin
Samuel Kaski
AI4TS
25
17
0
16 Nov 2021
Geometry-aware Bayesian Optimization in Robotics using Riemannian
  Matérn Kernels
Geometry-aware Bayesian Optimization in Robotics using Riemannian Matérn Kernels
Noémie Jaquier
Viacheslav Borovitskiy
A. Smolensky
Alexander Terenin
Tamim Asfour
Leonel Rozo
29
35
0
02 Nov 2021
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Yonghui Fan
Yalin Wang
18
2
0
30 Oct 2021
Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge
  Independent Projected Kernels
Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels
M. Hutchinson
Alexander Terenin
Viacheslav Borovitskiy
So Takao
Yee Whye Teh
M. Deisenroth
28
20
0
27 Oct 2021
Nonnegative spatial factorization
Nonnegative spatial factorization
F. W. Townes
Barbara E. Engelhardt
16
11
0
12 Oct 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
42
49
0
27 Dec 2020
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
57
0
08 Nov 2020
Matérn Gaussian Processes on Graphs
Matérn Gaussian Processes on Graphs
Viacheslav Borovitskiy
I. Azangulov
Alexander Terenin
P. Mostowsky
M. Deisenroth
N. Durrande
13
78
0
29 Oct 2020
Manifold GPLVMs for discovering non-Euclidean latent structure in neural
  data
Manifold GPLVMs for discovering non-Euclidean latent structure in neural data
Kristopher T. Jensen
Ta-Chu Kao
Marco Tripodi
Guillaume Hennequin
DRL
22
31
0
12 Jun 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
13
34
0
09 Jun 2020
1