Communities
Connect sessions
AI calendar
Organizations
Contact Sales
Search
Open menu
Home
Papers
2006.11239
Cited By
v1
v2 (latest)
Denoising Diffusion Probabilistic Models
Neural Information Processing Systems (NeurIPS), 2025
19 June 2020
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
Re-assign community
ArXiv (abs)
PDF
HTML
Github (4424★)
Papers citing
"Denoising Diffusion Probabilistic Models"
23 / 9,773 papers shown
Title
Learning Energy-Based Models With Adversarial Training
Xuwang Yin
Shiying Li
Gustavo K. Rohde
AAML
DiffM
167
10
0
11 Dec 2020
Generative Learning With Euler Particle Transport
Yuan Gao
Jian Huang
Yuling Jiao
Jin Liu
Xiliang Lu
J. Yang
OT
100
2
0
11 Dec 2020
Improved Contrastive Divergence Training of Energy Based Models
International Conference on Machine Learning (ICML), 2024
Yilun Du
Shuang Li
J. Tenenbaum
Igor Mordatch
286
154
0
02 Dec 2020
Score-Based Generative Modeling through Stochastic Differential Equations
International Conference on Learning Representations (ICLR), 2025
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
764
7,684
0
26 Nov 2020
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
International Conference on Learning Representations (ICLR), 2025
R. Child
BDL
VLM
274
365
0
20 Nov 2020
Diffusion models for Handwriting Generation
Troy Luhman
Eric Luhman
DiffM
105
28
0
13 Nov 2020
RDIS: Random Drop Imputation with Self-Training for Incomplete Time Series Data
Taehyean Choi
Ji-Su Kang
Jong-Hwan Kim
SyDa
AI4TS
137
22
0
20 Oct 2020
The Deep Bootstrap Framework: Good Online Learners are Good Offline Generalizers
Preetum Nakkiran
Behnam Neyshabur
Hanie Sedghi
OffRL
156
11
0
16 Oct 2020
VoiceGrad: Non-Parallel Any-to-Many Voice Conversion with Annealed Langevin Dynamics
Hirokazu Kameoka
Takuhiro Kaneko
Kou Tanaka
Nobukatsu Hojo
Shogo Seki
DiffM
182
24
0
06 Oct 2020
A Contrastive Learning Approach for Training Variational Autoencoder Priors
J. Aneja
Alex Schwing
Jan Kautz
Arash Vahdat
DRL
273
88
0
06 Oct 2020
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLM
DiffM
691
8,850
0
06 Oct 2020
VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models
International Conference on Learning Representations (ICLR), 2025
Zhisheng Xiao
Karsten Kreis
Jan Kautz
Arash Vahdat
217
131
0
01 Oct 2020
DiffWave: A Versatile Diffusion Model for Audio Synthesis
International Conference on Learning Representations (ICLR), 2025
Zhifeng Kong
Ming-Yu Liu
Jiaji Huang
Kexin Zhao
Bryan Catanzaro
DiffM
BDL
474
1,617
0
21 Sep 2020
Dodging DeepFake Detection via Implicit Spatial-Domain Notch Filtering
Yihao Huang
Felix Juefei Xu
Qing Guo
Yang Liu
G. Pu
137
26
0
19 Sep 2020
Adversarial score matching and improved sampling for image generation
International Conference on Learning Representations (ICLR), 2025
Alexia Jolicoeur-Martineau
Remi Piche-Taillefer
Rémi Tachet des Combes
Ioannis Mitliagkas
DiffM
172
129
0
11 Sep 2020
WaveGrad: Estimating Gradients for Waveform Generation
International Conference on Learning Representations (ICLR), 2025
Nanxin Chen
Yu Zhang
Heiga Zen
Ron J. Weiss
Mohammad Norouzi
William Chan
DiffM
BDL
266
834
0
02 Sep 2020
SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows
Didrik Nielsen
P. Jaini
Emiel Hoogeboom
Ole Winther
Max Welling
TPM
BDL
DRL
167
94
0
06 Jul 2020
Simple and Effective VAE Training with Calibrated Decoders
International Conference on Machine Learning (ICML), 2024
Oleh Rybkin
Kostas Daniilidis
Sergey Levine
185
103
0
23 Jun 2020
Locally Masked Convolution for Autoregressive Models
Conference on Uncertainty in Artificial Intelligence (UAI), 2025
Ajay Jain
Pieter Abbeel
Deepak Pathak
DiffM
OffRL
142
32
0
22 Jun 2020
Differentiable Augmentation for Data-Efficient GAN Training
Neural Information Processing Systems (NeurIPS), 2025
Shengyu Zhao
Zhijian Liu
Ji Lin
Jun-Yan Zhu
Song Han
351
627
0
18 Jun 2020
Score-Guided Generative Adversarial Networks
Minhyeok Lee
Junhee Seok
EGVM
116
17
0
09 Apr 2020
An Equivalence between Bayesian Priors and Penalties in Variational Inference
Pierre Wolinski
Guillaume Charpiat
Yann Ollivier
BDL
105
1
0
01 Feb 2020
Learning Generative Models using Denoising Density Estimators
Siavash Bigdeli
Geng Lin
Tiziano Portenier
L. A. Dunbar
Matthias Zwicker
DiffM
166
15
0
08 Jan 2020
Previous
1
2
3
...
194
195
196