ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.11239
  4. Cited By
Denoising Diffusion Probabilistic Models
v1v2 (latest)

Denoising Diffusion Probabilistic Models

Neural Information Processing Systems (NeurIPS), 2025
19 June 2020
Jonathan Ho
Ajay Jain
Pieter Abbeel
    DiffM
ArXiv (abs)PDFHTMLGithub (4424★)

Papers citing "Denoising Diffusion Probabilistic Models"

50 / 9,926 papers shown
Title
Diffusion Schrödinger Bridge with Applications to Score-Based
  Generative Modeling
Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling
Valentin De Bortoli
James Thornton
J. Heng
Arnaud Doucet
DiffMOT
323
546
0
01 Jun 2021
On Fast Sampling of Diffusion Probabilistic Models
On Fast Sampling of Diffusion Probabilistic Models
Zhifeng Kong
Ming-Yu Liu
DiffM
196
208
0
31 May 2021
SNIPS: Solving Noisy Inverse Problems Stochastically
SNIPS: Solving Noisy Inverse Problems Stochastically
Bahjat Kawar
Gregory Vaksman
Michael Elad
214
214
0
31 May 2021
Cascaded Diffusion Models for High Fidelity Image Generation
Cascaded Diffusion Models for High Fidelity Image Generation
Jonathan Ho
Chitwan Saharia
William Chan
David J. Fleet
Mohammad Norouzi
Tim Salimans
370
1,370
0
30 May 2021
Diffusion-Based Representation Learning
Diffusion-Based Representation Learning
K. Abstreiter
Sarthak Mittal
Stefan Bauer
Bernhard Schölkopf
Arash Mehrjou
DiffM
112
62
0
29 May 2021
Gotta Go Fast When Generating Data with Score-Based Models
Gotta Go Fast When Generating Data with Score-Based Models
Alexia Jolicoeur-Martineau
Ke Li
Remi Piche-Taillefer
Tal Kachman
Ioannis Mitliagkas
DiffM
192
241
0
28 May 2021
DiffSVC: A Diffusion Probabilistic Model for Singing Voice Conversion
DiffSVC: A Diffusion Probabilistic Model for Singing Voice Conversion
Songxiang Liu
Yuewen Cao
Jane Polak Scowcroft
Helen Meng
DiffM
118
62
0
28 May 2021
Unsupervised Deep Learning Methods for Biological Image Reconstruction
  and Enhancement
Unsupervised Deep Learning Methods for Biological Image Reconstruction and Enhancement
Mehmet Akccakaya
Burhaneddin Yaman
Hyungjin Chung
Jong Chul Ye
MedIm
154
59
0
17 May 2021
ItôTTS and ItôWave: Linear Stochastic Differential Equation Is All
  You Need For Audio Generation
ItôTTS and ItôWave: Linear Stochastic Differential Equation Is All You Need For Audio Generation
Shoule Wu
Ziqiang Shi
DiffM
194
11
0
17 May 2021
High-Resolution Complex Scene Synthesis with Transformers
High-Resolution Complex Scene Synthesis with Transformers
Manuel Jahn
Robin Rombach
Bjorn Ommer
ViT
123
37
0
13 May 2021
Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech
Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech
Vadim Popov
Ivan Vovk
Vladimir Gogoryan
Tasnima Sadekova
Mikhail Kudinov
DiffM
226
604
0
13 May 2021
Diffusion Models Beat GANs on Image Synthesis
Diffusion Models Beat GANs on Image Synthesis
Prafulla Dhariwal
Alex Nichol
905
9,136
0
11 May 2021
Contrastive Learning for Unsupervised Image-to-Image Translation
Contrastive Learning for Unsupervised Image-to-Image Translation
Hanbit Lee
Jinseok Seol
Sang-goo Lee
VLMSSL
157
21
0
07 May 2021
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism
Jinglin Liu
Chengxi Li
Yi Ren
Feiyang Chen
Zhou Zhao
DiffM
316
293
0
06 May 2021
Synthetic Data for Model Selection
Synthetic Data for Model Selection
Alon Shoshan
Nadav Bhonker
Igor Kviatkovsky
Matan Fintz
Gérard Medioni
110
6
0
03 May 2021
SRDiff: Single Image Super-Resolution with Diffusion Probabilistic
  Models
SRDiff: Single Image Super-Resolution with Diffusion Probabilistic Models
Haoying Li
Yifan Yang
Meng Chang
H. Feng
Zhi-hai Xu
Qi Li
Yue-ting Chen
DiffM
221
713
0
30 Apr 2021
VideoGPT: Video Generation using VQ-VAE and Transformers
VideoGPT: Video Generation using VQ-VAE and Transformers
Wilson Yan
Yunzhi Zhang
Pieter Abbeel
A. Srinivas
ViTVGen
437
585
0
20 Apr 2021
Review of end-to-end speech synthesis technology based on deep learning
Review of end-to-end speech synthesis technology based on deep learning
Zhaoxi Mu
Xinyu Yang
Yizhuo Dong
AuLLMALM
130
27
0
20 Apr 2021
Robust Learning Meets Generative Models: Can Proxy Distributions Improve
  Adversarial Robustness?
Robust Learning Meets Generative Models: Can Proxy Distributions Improve Adversarial Robustness?
Vikash Sehwag
Saeed Mahloujifar
Tinashe Handina
Sihui Dai
Chong Xiang
M. Chiang
Prateek Mittal
OOD
170
136
0
19 Apr 2021
UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion
  Probabilistic Models
UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models
Hiroshi Sasaki
Chris G. Willcocks
T. Breckon
DiffM
116
178
0
12 Apr 2021
On tuning consistent annealed sampling for denoising score matching
On tuning consistent annealed sampling for denoising score matching
Joan Serrà
Santiago Pascual
Jordi Pons
DiffM
103
6
0
08 Apr 2021
3D Shape Generation and Completion through Point-Voxel Diffusion
3D Shape Generation and Completion through Point-Voxel DiffusionIEEE International Conference on Computer Vision (ICCV), 2023
Linqi Zhou
Yilun Du
Jiajun Wu
DiffM
225
579
0
08 Apr 2021
Creativity and Machine Learning: A Survey
Creativity and Machine Learning: A Survey
Giorgio Franceschelli
Mirco Musolesi
VLMAI4CE
299
50
0
06 Apr 2021
Noise Estimation for Generative Diffusion Models
Noise Estimation for Generative Diffusion Models
Robin San-Roman
Eliya Nachmani
Lior Wolf
DiffM
200
112
0
06 Apr 2021
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling
Junhyeok Lee
Seungu Han
DiffM
150
80
0
06 Apr 2021
Diff-TTS: A Denoising Diffusion Model for Text-to-Speech
Diff-TTS: A Denoising Diffusion Model for Text-to-Speech
Myeonghun Jeong
Hyeongju Kim
Sung Jun Cheon
Byoung Jin Choi
N. Kim
DiffM
125
208
0
03 Apr 2021
Symbolic Music Generation with Diffusion Models
Symbolic Music Generation with Diffusion Models
Gautam Mittal
Jesse Engel
Curtis Hawthorne
Ian Simon
MGenDiffM
198
204
0
30 Mar 2021
LatentKeypointGAN: Controlling GANs via Latent Keypoints
LatentKeypointGAN: Controlling GANs via Latent Keypoints
Xingzhe He
Bastian Wandt
Helge Rhodin
GAN
239
7
0
29 Mar 2021
Transitional Learning: Exploring the Transition States of Degradation
  for Blind Super-resolution
Transitional Learning: Exploring the Transition States of Degradation for Blind Super-resolution
Yuanfei Huang
Jie Li
Yanting Hu
Xinbo Gao
Huan Huang
103
7
0
29 Mar 2021
Improved Autoregressive Modeling with Distribution Smoothing
Improved Autoregressive Modeling with Distribution Smoothing
Chenlin Meng
Jiaming Song
Yang Song
Shengjia Zhao
Stefano Ermon
DiffM
111
23
0
28 Mar 2021
Generating Novel Scene Compositions from Single Images and Videos
Generating Novel Scene Compositions from Single Images and Videos
V. Sushko
Dan Zhang
Juergen Gall
Anna Khoreva
GAN
148
16
0
24 Mar 2021
VDSM: Unsupervised Video Disentanglement with State-Space Modeling and
  Deep Mixtures of Experts
VDSM: Unsupervised Video Disentanglement with State-Space Modeling and Deep Mixtures of Experts
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CoGe
167
8
0
12 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLMTPM
483
567
0
08 Mar 2021
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
275
129
0
08 Mar 2021
Greedy Hierarchical Variational Autoencoders for Large-Scale Video
  Prediction
Greedy Hierarchical Variational Autoencoders for Large-Scale Video Prediction
Bohan Wu
Suraj Nair
Roberto Martin-Martin
Li Fei-Fei
Chelsea Finn
DRL
154
105
0
06 Mar 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
152
287
0
02 Mar 2021
Diffusion Probabilistic Models for 3D Point Cloud Generation
Diffusion Probabilistic Models for 3D Point Cloud Generation
Shitong Luo
Wei Hu
3DPC
449
828
0
02 Mar 2021
EBMs Trained with Maximum Likelihood are Generator Models Trained with a
  Self-adverserial Loss
EBMs Trained with Maximum Likelihood are Generator Models Trained with a Self-adverserial Loss
Zhisheng Xiao
Qing Yan
Y. Amit
133
2
0
23 Feb 2021
Anytime Sampling for Autoregressive Models via Ordered Autoencoding
Anytime Sampling for Autoregressive Models via Ordered Autoencoding
Yilun Xu
Yang Song
Sahaj Garg
Linyuan Gong
Rui Shu
Aditya Grover
Stefano Ermon
DiffM
115
12
0
23 Feb 2021
Improved Denoising Diffusion Probabilistic Models
Improved Denoising Diffusion Probabilistic Models
Alex Nichol
Prafulla Dhariwal
DiffM
424
4,217
0
18 Feb 2021
How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
  and Auditing Generative Models
How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating and Auditing Generative Models
Ahmed Alaa
B. V. Breugel
Evgeny S. Saveliev
M. Schaar
179
223
0
17 Feb 2021
Argmax Flows and Multinomial Diffusion: Learning Categorical
  Distributions
Argmax Flows and Multinomial Diffusion: Learning Categorical DistributionsNeural Information Processing Systems (NeurIPS), 2025
Emiel Hoogeboom
Didrik Nielsen
P. Jaini
Patrick Forré
Max Welling
DiffM
422
500
0
10 Feb 2021
Neural SDEs as Infinite-Dimensional GANs
Neural SDEs as Infinite-Dimensional GANs
Patrick Kidger
James Foster
Xuechen Li
Harald Oberhauser
Terry Lyons
DiffM
133
175
0
06 Feb 2021
Autoregressive Denoising Diffusion Models for Multivariate Probabilistic
  Time Series Forecasting
Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting
Kashif Rasul
Calvin Seward
Ingmar Schuster
Roland Vollgraf
DiffM
272
369
0
28 Jan 2021
Stochastic Image Denoising by Sampling from the Posterior Distribution
Stochastic Image Denoising by Sampling from the Posterior Distribution
Bahjat Kawar
Gregory Vaksman
Michael Elad
DiffM
153
69
0
23 Jan 2021
Maximum Likelihood Training of Score-Based Diffusion Models
Maximum Likelihood Training of Score-Based Diffusion ModelsNeural Information Processing Systems (NeurIPS), 2025
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
DiffM
437
737
0
22 Jan 2021
How to Train Your Energy-Based Models
How to Train Your Energy-Based Models
Yang Song
Diederik P. Kingma
DiffM
184
286
0
09 Jan 2021
Knowledge Distillation in Iterative Generative Models for Improved
  Sampling Speed
Knowledge Distillation in Iterative Generative Models for Improved Sampling Speed
Eric Luhman
Troy Luhman
DiffM
316
314
0
07 Jan 2021
RBM-Flow and D-Flow: Invertible Flows with Discrete Energy Base Spaces
RBM-Flow and D-Flow: Invertible Flows with Discrete Energy Base Spaces
Daniel O'Connor
W. Vinci
91
1
0
24 Dec 2020
A Survey on Visual Transformer
A Survey on Visual Transformer
Kai Han
Yunhe Wang
Hanting Chen
Xinghao Chen
Jianyuan Guo
...
Chunjing Xu
Yixing Xu
Zhaohui Yang
Yiman Zhang
Dacheng Tao
ViT
596
2,602
0
23 Dec 2020
Previous
123...197198199
Next