ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.12279
  4. Cited By
Revisiting Loss Modelling for Unstructured Pruning

Revisiting Loss Modelling for Unstructured Pruning

22 June 2020
César Laurent
Camille Ballas
Thomas George
Nicolas Ballas
Pascal Vincent
ArXiv (abs)PDFHTML

Papers citing "Revisiting Loss Modelling for Unstructured Pruning"

6 / 6 papers shown
On Efficient Variants of Segment Anything Model: A Survey
On Efficient Variants of Segment Anything Model: A SurveyInternational Journal of Computer Vision (IJCV), 2024
Xiaorui Sun
Jing Liu
Mengqi Li
Xiaofeng Zhu
Ping Hu
VLM
515
19
0
07 Oct 2024
Unified Data-Free Compression: Pruning and Quantization without
  Fine-Tuning
Unified Data-Free Compression: Pruning and Quantization without Fine-TuningIEEE International Conference on Computer Vision (ICCV), 2023
Shipeng Bai
Jun Chen
Xintian Shen
Yixuan Qian
Yong Liu
MQ
234
21
0
14 Aug 2023
Sparse then Prune: Toward Efficient Vision Transformers
Sparse then Prune: Toward Efficient Vision Transformers
Yogi Prasetyo
N. Yudistira
A. Widodo
VLMViT
127
4
0
22 Jul 2023
Person Detection Using an Ultra Low-resolution Thermal Imager on a
  Low-cost MCU
Person Detection Using an Ultra Low-resolution Thermal Imager on a Low-cost MCUImage and Vision Computing New Zealand (IVCNZ), 2022
Maarten Vandersteegen
Wouter Reusen
Kristof Van Beeck
Toon Goedemé
137
2
0
16 Dec 2022
Cyclical Pruning for Sparse Neural Networks
Cyclical Pruning for Sparse Neural Networks
Suraj Srinivas
Andrey Kuzmin
Markus Nagel
M. V. Baalen
Andrii Skliar
Tijmen Blankevoort
188
15
0
02 Feb 2022
Data-Driven Low-Rank Neural Network Compression
Data-Driven Low-Rank Neural Network Compression
D. Papadimitriou
Swayambhoo Jain
BDL
235
8
0
13 Jul 2021
1