ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.13170
  4. Cited By
Variational Orthogonal Features

Variational Orthogonal Features

23 June 2020
David R. Burt
C. Rasmussen
Mark van der Wilk
    BDLDRL
ArXiv (abs)PDFHTML

Papers citing "Variational Orthogonal Features"

11 / 11 papers shown
Title
Kernel Multigrid: Accelerate Back-fitting via Sparse Gaussian Process
  Regression
Kernel Multigrid: Accelerate Back-fitting via Sparse Gaussian Process Regression
Lu Zou
Liang Ding
78
0
0
20 Mar 2024
Integrated Variational Fourier Features for Fast Spatial Modelling with
  Gaussian Processes
Integrated Variational Fourier Features for Fast Spatial Modelling with Gaussian Processes
Talay M Cheema
C. Rasmussen
GP
122
2
0
27 Aug 2023
Spherical Inducing Features for Orthogonally-Decoupled Gaussian
  Processes
Spherical Inducing Features for Orthogonally-Decoupled Gaussian Processes
Louis C. Tiao
Vincent Dutordoir
Victor Picheny
BDL
57
0
0
27 Apr 2023
Free-Form Variational Inference for Gaussian Process State-Space Models
Free-Form Variational Inference for Gaussian Process State-Space Models
Xuhui Fan
Edwin V. Bonilla
T. O’Kane
Scott A. Sisson
66
9
0
20 Feb 2023
Spectrum Gaussian Processes Based On Tunable Basis Functions
Spectrum Gaussian Processes Based On Tunable Basis Functions
Wenqi Fang
Guanlin Wu
Jingjing Li
Ziyi Wang
Jiang Cao
Yang Ping
15
0
0
14 Jul 2021
Combining Pseudo-Point and State Space Approximations for Sum-Separable
  Gaussian Processes
Combining Pseudo-Point and State Space Approximations for Sum-Separable Gaussian Processes
Will Tebbutt
Arno Solin
Richard Turner
56
8
0
18 Jun 2021
Scalable Variational Gaussian Processes via Harmonic Kernel
  Decomposition
Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition
Shengyang Sun
Jiaxin Shi
A. Wilson
Roger C. Grosse
BDL
31
7
0
10 Jun 2021
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Vincent Dutordoir
J. Hensman
Mark van der Wilk
Carl Henrik Ek
Zoubin Ghahramani
N. Durrande
BDLUQCV
103
31
0
10 May 2021
SigGPDE: Scaling Sparse Gaussian Processes on Sequential Data
SigGPDE: Scaling Sparse Gaussian Processes on Sequential Data
M. Lemercier
C. Salvi
Thomas Cass
Edwin V. Bonilla
Theodoros Damoulas
Terry Lyons
63
25
0
10 May 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
127
51
0
27 Dec 2020
Matérn Gaussian Processes on Graphs
Matérn Gaussian Processes on Graphs
Viacheslav Borovitskiy
I. Azangulov
Alexander Terenin
P. Mostowsky
M. Deisenroth
N. Durrande
51
82
0
29 Oct 2020
1